
Database Systems: Optimizing Database Didier Cabannes
Performance in J2EE Apps The best of both worlds 12

Feature: The Critical Role of Walter Hurst
Application Architecture A fundamental issue 22

Show Review: First Impressions Ajit Sagar
JavaOne 2002: How did it measure up to past shows? 30

AI: Programming Neural Networks in Java Jeff Heaton
An efficient way to perform certain operations 38

JDBC 3.0: Something for Everyone John Goodson
The new features and why they’re important 56

Jini & J2ME: Jini Surrogate As a Platform William Swaney
for J2ME Games Using HTTP as a protocol 66

Feature: OSGi: The Last Mile of Peter Kriens
Software Deployment Solve last-minute problems 74

Pro Mobile: Keep Mobile Data and Applications Jeff Capone
in Sync with Java An integral part of your mobile strategy 84

App Management: Manifest Destiny Norman Richards
Simplify the packaging and releasing of Java applications 94

Java COM

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL JULY 31, 2002

The World’s Leading Java Resource

May 2002 Volume:7 Issue:5

The World’s Leading Java Resource

TM

THE LARGEST JAVA & WEB SERVICES EXPO IN THE WORLD! P.99

ateways

Java Clients

WAP/Brows
Based Clien

Intermittent Connectivity

I

From the Editor
Alan Williamson pg. 7

J2EE Editorial
Ajit Sagar pg. 9

J2SE Editorial
Keith Brown pg. 36

J2ME Editorial
Jason R. Briggs pg. 62

Industry Commentary
Kuldip Singh Pabla pg. 64

JDJ Labs
Enterprise JavaBeans pg.90

Java-Miner pg. 92

FULL CONFERENCE PROGRAM
�INSIDE PAGE 99

Java COM

2 MAY 2002

Sonic Software
www.sonicsoftware.com

3MAY 2002

Java COM

Zero G
www.zerog.com

Java COM

4 MAY 2002

Apple Computer,
Inc.

www.apple.com/macosx

5MAY 2002

Java COM

Apple Computer,
Inc.

www.apple.com/macosx

Java COM

6 MAY 2002

BEA
www.bea.com/download

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

F R O M T H E E D I T O RD IF

My Kingdom for a Phone

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

The whole wireless space has been an
interesting one to keep an eye on for
the past couple of years, in particular

how it relates to the Java space. Sure, we’ve
heard wonderful tales about the vast mil-
lions of phones in Japan and how quickly
Java is being adopted there, but for the rest of
us here in the West, it’s not quite as exciting.
Regular readers know only too well my woes
with my Nokia and the lack of Java support.
The question is this: Is it a pipe dream or is it
really coming?

That was the question I posed to Nokia at
JavaOne. Whereby I was given the usual mar-
keting pitch about the great array of develop-
er’s tools and shown the nice color chart of all
the models that have been Java-enabled.
Naturally, I ooh’d and ah’d in the right places.
I then asked to what extent would the KVM
be integrated. For example, would I be able to
access the hundreds of telephone numbers
already stored in my Nokia address book?
The answer was no! Excuse me? Okay, try not
to panic, I thought, not a major problem. I
just need to import them to my Java applica-
tion and they can reside there. I asked for
confirmation that my Java application would
be able to make phone calls from my now
imported contact list. No was the answer
again, “That would be a security risk and vio-
late the openness of the specification.”

At this point, I couldn’t believe what I was
hearing. Is this true? We have a
phone…whose main purpose in life is to
make calls. That’s its calling, to use a very
bad pun. We can load applications on it that
can’t actually take advantage of the core
functionality of the phone? Major oversight,
wouldn’t you say? Tell me again why I want
my next phone to be Java-enabled? Someone
please e-mail me and tell me I’m wrong.

At JavaOne, I had a great meeting with
Bruce Scott from PointBase; he kindly spent
time discussing what they were doing and
where they see the future of J2ME. For those

of you who don’t know the name, Bruce was
the main engineering man behind the data-
base at Oracle, so when he talks about data-
bases, you kinda wanna listen.

PointBase was doing some cool stuff with
syncing technology, as they had given up
hope regarding the always-on network, and
their clients were looking for real-world
solutions they could use today. It was a great
JDBC database/driver that operated at the
J2ME level. You would simply tag the table
columns you wanted synced with the data-
base at the back end, and when the network
was available, the two would automatically
sync with one another, recovering should the
network drop. It doesn’t seem that impres-
sive on the face of it, until you realize they do
all this in under 50KB! However, the reason I
mention PointBase is that they were atypical
of the shift in the wireless space I witnessed
at JavaOne.

Developers were going to great lengths to
tell me about their solutions regarding the
state of the network, and the conditions their
software would excel in, such as a tempera-
mental network going up and down. This I
found reassuring because I live in a rural
area where reception for my mobile is not
always 100%; I was beginning to worry that I
may be left behind in this new always-on,
always-connected, Web-serviced world!

On the whole, JavaOne was a good show
with plenty of walking space between the
booths (you definitely knew the bottom had
fallen out of the dot-com world). I caught up
with a lot of old faces, listened attentively to
what they were up to, had a brush with J2EE
Blueprints, and met a vast array of new faces.
It was a great event, as usual.

We were there with SYS-CON Radio
interviewing the latest and greatest. Keith
Brown, our esteemed J2SE editor, conducted
the majority of the interviews, which you can
listen to online at www.sys-con.com/java/.

Until next month …

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
EXECUTIVE EDITOR: NANCY VALENTINE

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: KEITH BROWN

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
JEAN CASSIDY

ONLINE EDITOR: LIN GOETZ
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, JASON BELL, JASON R. BRIGGS, KEITH BROWN,

DIDIER CABANNES, JEFF CAPONE, JOHN GOODSON, JEFF HEATON,
WALTER HURST, PETER KRIENS, KULDIP SINGH PABLA, BILLY PALMIERI,

NORMAN RICHARDS, AJIT SAGAR, HENDRIK SCHREIBER,
BILL SWANEY, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

7MAY 2002

J2SE
H

om
e

J2E
E

J2M
E

Java COM

8 MAY 2002

Java COM

TogetherSoft
Corporation
www.togethersoft.com/1/jd.jsp

te

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor and editor-in-chief of XML-Journal. A lead architect with Metavonni, LC,

based in Dallas, he’s well versed in Java,Web, and XML technologies.

ajit@sys-con.com

Are You Being Served?
I’ll never buy a Casio watch again. Not

just because they break down – that’s
just the luck of the draw – but because

of their extremely poor service. I’ve spent
months trying to get my $200 watch back
from their service center, but to no avail. It
isn’t the money that matters; it’s the princi-
ple of the thing. For a couple of months it
was nearly impossible to get anyone on
the phone, and there was no advertised
Web address for contacting the service
center.

Customer service and relationship
management is the cornerstone of a suc-
cessful business. Today’s software industry
is a lot like other industries – it’s service-
driven and highly competitive. With the
three-month Internet-year release cycle,
vendors work hard to keep their service
offerings at an acceptable level and to
keep up with the rapid changes to the
baseline products. They struggle with the
same issues that all other industries do –
selling products to customers and then
retaining those customers. Vendor prod-
ucts that offer functionality for J2EE have
to work on a framework that’s evolving at a
breakneck speed.

Since they deal with new functionality
and APIs that are still stabilizing with every
release of the platform, vendors have to
make sure their marketing message is well
coordinated with their ability to deliver
the goods in light of rapidly evolving stan-
dards. Vendors face a paradoxical situa-
tion. To gain a larger market share, they
need to make sure they’re standards-com-
pliant. To distinguish themselves from the
competition, they need to offer propri-
etary value-adds to the basic functionality
offered by Sun’s specs for the J2EE plat-
form.

Retaining customers is largely depend-
ent on how well the products are support-
ed. For the past few years, J2EE vendors

have been playing catch-up with Sun’s
J2EE platform APIs. The platform is now
stable and there are ample examples of
real-world deployments. At this stage in a
platform’s development cycle, support and
service for J2EE-based products becomes
of paramount importance. With the recent
economic debacle, there’s less room in
organizations for “buy and try” and more
of a requirement for well-supported prod-
ucts.

Before selecting a vendor who supplies
J2EE wares, organizations need to make
sure that adequate support will be avail-
able when they’re struggling with critical
and complex issues. Almost all the J2EE
application server vendors have their part-
ner programs. However, based on recent
experience, I’d like to caution you before
marrying your development to a specific
product. It’s very important to make sure
support will be provided by skillful per-
sonnel in a timely manner.

One of the risks with the programs
offered by vendors is that often the support
person at the other end is not very quali-
fied, and may be even less familiar with the
product than you are. There’s no option but
to run the gauntlet before the support call
is escalated to where you get the right level
of technical support. Sometimes you end
up educating the person at the other end
before getting any valuable feedback. This
could take several weeks and potentially
jeopardize your deadlines.

To select the right vendors, it’s impor-
tant to look at their legacy. After all, J2EE is
a fairly new platform – less than 10 years
old. Therefore, most of the J2EE applica-
tion server and other tool vendors are rein-
carnations of vendors who came from
other product lines. The legacy defines
their areas of expertise. Eventually, it
determines the level of support they can
offer to your application development.

J 2 E E E D I T O R I A LO R J 2 E E I N D E XX

AJIT SAGAR J2EE EDITOR

9

10

12

22

30

9MAY 2002

Java COM

J2SE
H

om
e

J2E
E

J2M
E

Are You Being Served?
Customer service and relation-

ship management is the corner-
stone of a successful business.
Before selecting a vendor who

supplies J2EE wares, make sure
that adequate support will be

available when you’re struggling
with critical and complex issues.

by Ajit Sagar

J2EE FAQ
The answers to your J2EE

questions

Optimizing Database
Performance in J2EE

Applications
With hybrid databases,

J2EE developers can demand
a database that meets the

intrinsic requirements of
scalability, high transaction
volumes, high-volume data

transfer, and the need for fast
throughput as well as an

object data model that more
accurately represents busi-
ness processes, now and in

the future.
by Didier Cabannes

The Critical Role of
Application Architecture
Vendors are delivering tools
and frameworks to ease the

next level of application
development for many proj-
ect teams, allowing them to

focus on the business
requirements at hand and

obviate the need to deal with
what will soon become mun-

dane development tasks.
Nowhere will this be more

apparent than in the area of
application architecture.

By Walter Hurst

JavaOne Show Review
If you didn’t make it to

JavaOne this year, find out
what you missed – what the

big announcements were,
who the best keynote speak-

ers were, and more.
by Ajit Sagar

J 2 E E F A QQ J 2 E E R O A D M A PA

The Java 2 Platform, Enterprise Edition defines
the APIs for building enterprise-level applications.

J2SE.............................v. 1.2

Enterprise JavaBeans API
.....................................v. 1.1

Java Servletsv. 2.2

JavaServer Pages Technology
.....................................v. 1.1

JDBC Standard Extension
.....................................v. 2.0
Java Naming and Directory
Interface APIv. 1.2

RMI/IIOPv. 1.0

Java Transaction API ..v. 1.0

JavaMail APIv. 1.1

Java Messaging Service
.....................................v. 1.0

Useful URLs:
Java 2 Platform, Enterprise Edition
www.java.sun.com/j2ee/

J2EE Blueprints
www.java.sun.com/j2ee/
blueprints

J2EE Technology Center
http://developer.java.sun.com/developer/
products/j2ee/

J2EE Tutorial
http://java.sun.com/j2ee/
tutorial/

A
Q

J2
SE

H
om

e
J2

E
E

J2
M

E

A
Q

T he figure below illustrates the class hierarchy
for EJB 2.0 and the interfaces that are includ-

ed. The main interfaces for EJBs are packaged under
javax.ejb; they’re standard extensions to the core
Java classes.

The javax.ejb package defines the interfaces you
need to extend your application’s components. By def-
inition, Enterprise JavaBean is a specification for dis-
tributed architecture. In Java terms, this means that a
Java class running in one JVM should be able to com-
municate with an EJB component in another via an
RMI call. First, let’s look at the EJBObject and
EJBHome interfaces, which are shown in the middle
pane of the figure. These interfaces extend the
java.rmi.Remote interface. The Remote interface
serves to identify interfaces whose methods may be
invoked from a nonlocal virtual machine. Any object
that’s a remote object must implement this interface.

As you probably know, EJBs can only run inside
a J2EE EJB container. The container abstracts many
of the low-level services from the application devel-
oper (you). One set of services that it abstracts is the
life-cycle management of the EJBs. The EJBHome
interface is used to create this abstraction and can

be accessed remotely to create or find the actual
EJB component. The methods are invoked by the
remote client, but are executed by the container.

The EJBObject interface is used to define the
business methods for your EJB component. The
interface defines methods to access the actual EJB
class and to remove it when it’s no longer needed.
The EJBObject is a delegator interface that dele-
gates the actual execution of the business objects to
the enterprise bean.

The latest release of the EJB specification adds
classes and interfaces to support the concept of
colocated EJBs (local interfaces). As you can see in
the left pane of the figure, the local interfaces

(EJBLocalObject and EJBLocalHome) don’t extend
the java.rmi.Remote interface. You can’t use them to
access distributed objects. The local interfaces were
added to the EJB specification in 2.0 so that compo-
nent accesses to EJB components within the same
JVM don’t have to be done through RMI, which is
very expensive since each call requires a distributed
call.

The enterprise bean interfaces are illustrated on
the left side of the figure. These interfaces were
added to the EJB specification in 2.0. Local inter-
faces support the concept of colocated EJBs (local
interfaces). The local interfaces (EJBLocalObject and
EJBLocalHome) don’t extend the java.rmi.Remote
interface so you can’t use them to access distributed
objects. Other than that, the EJBLocalObject is the
equivalent of the EJBObject, and the EJBLocalHome
is the equivalent of EJBHome. Note that the same
EJB component can implement both interfaces
simultaneously, thus allowing remote access
through RMI and local access through a local
method call.

The right pane of the figure shows the interfaces
used to create the actual implementation class. The

EnterpriseBean interface is a serializable interface
for creating the EJB component. The three types of
EJBs supported in 2.0 are EntityBean, SessionBean,
and MessageDrivenBean. Each of these extends the
EntityBean interface.

As an application developer, for each enterprise
JavaBean in your application, you need to extend the
appropriate home and remote interfaces
(local/remote) and provide an implementation for the
appropriate enterprise bean (entity/session/mes-
sagedrivenbean).

Details on developing the interfaces and classes
for your application’s EJBs will be covered in subse-
quent FAQs.

EJB 2.0 is the latest release of the Enterprise JavaBean specification. The major releases of the EJB specifi-
cation have been 1.0, 1.1, and 2.0. EJB 2.0 adds several crucial features to version 1.1, including message-

driven beans, local interfaces, an enhanced container-managed persistence, and EJB-QL (Query Language).

javax.ejb
package

<<interface>>
EJBLocalObject

<<interface>>
EJBLocalHome

EJBObject EJBHome
<<interface>> <<interface>>

EnterpriseBean
<<interface>>

<<interface>> <<interface>> <<interface>>
EntityBean SessionBean MessageDrivenBean

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

WHAT IS EJB 2.0?

WHAT ARE THE MAIN INTERFACES IN EJB 2.0?

Java COM

10 MAY 2002

11MAY 2002

Java COM

Metrowerks
Corp.

www.wireless-studio.com

Java COM

12 MAY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E Optimizing Database Performance
in J2EE Applications

D A T A B A S E M A N A G E M E N T S Y S T E M S

The object paradigm has proven
ideal for modeling a wide variety of real-
world scenarios. However, finding a
Java-compatible data repository opti-
mized for such applications has become
a stumbling block. While object data-
base management systems (ODBMSs)
provide the convenience of transparent
persistence of Java objects, their client-
centric architecture has not scaled well
in enterprise environments. Relational
database management systems
(RDBMSs) do scale well, but map each
object to a two-dimensional relational
table. The increased overhead can
reduce application performance to a
crawl.

This article discusses the limits of
using these two types of databases with
Java and suggests a better alternative for
J2EE – a hybrid database that combines
the best features of both. Hybrid data-
bases share with ODBMSs the ability to
map data stored in back-end databases
directly into an implementation-neutral
Java representation. As with relational
systems, hybrid databases can scale to
meet the performance requirements of
an enterprise-class J2EE application.

ODBMSs:The Hidden Headache of
Transparent Persistence

Over the years, finding a database
that’s both Java-compatible and scalable
enough for enterprise-class J2EE appli-
cations has not been easy. Ideally, a Java-
compatible database should store Java

objects whose classes have been
declared “persistent-capable” and can
be manipulated seamlessly by the Java
language.

That has been the promise of
ODBMSs, which made their appearance
in the mid-1990s as a solution designed
specifically for objects and thus better
suited for object development. With
ODBMSs, Java developers can define
persistent Java classes in the same way
transient Java classes are defined in the
application.

An apparent advantage of pure
object databases is the implementation
of transparent persistence that auto-
mates the process of mapping persistent
data objects into the data repository.
With transparent persistence, you don’t
even have to alter your existing Java
classes to describe the persistent data
that’s permanently stored in the data-
base (see Listing 1). That means you
don’t have to decide ahead of time, usu-
ally during the design phase, which
objects to include and exclude from the
database.

Adding a new customer order into
the database is as simple as creating a
new object in Java. Persistent-capable
objects are transient until attached to a
persistent manager or to other persist-
ent objects.

This convenience quickly becomes a
nightmare, however, when developing
scalable enterprise-class applications.
In a typical application, objects are

highly interconnected, and it’s very
important to know precisely which
objects have been stored with the data-
base and which have not. Consider an e-
commerce application in which prod-
ucts, customers, and orders are all
linked together (see Figure 1). The object
model naturally captures the interrela-
tionships of real-world applications.
With transparent persistence, you wind
up loading an entire closure of objects
even though you want to access only a
single object (see Figure 2). While the
programmer wants to load only one cus-
tomer, the closure of instances reach-
able from this object recursively loads a
large portion of the database. Loading
unneeded data in the Java VM limits
concurrency and scalability.

A simple customer query, for exam-
ple, could also lock pending orders and
products purchased, even though this
data was not requested and will remain
unchanged. Such “overloading” is not a
noticeable problem within a standalone
environment that manipulates a small
amount of data. However, in an enter-
prise-class, multiuser, transaction-
intensive application, large portions of
data get locked and instantiated, limit-
ing concurrency and scalability.

During the pilot phase of develop-
ment, performance is usually accept-
able since the system is not running
under heavy computational loads. But
with wider deployment and more users,
transaction rates can slow unacceptably

WRITTEN BY
DIDIER CABANNES

The Java 2 Platform, Enterprise Edition (J2EE), is the platform of
choice for implementing scalable and reliable enterprise applications
from reusable components. But Java developers building enterprise-
class J2EE applications face a quandary.

The best of both worlds

13MAY 2002

Java COM

Sun Microsystems
www.sun.com/forte

Java COM

14 MAY 2002

Infragistics, Inc.
www.infragistics.com

15MAY 2002

Java COM

Infragistics, Inc.
www.infragistics.com

Java COM

16 MAY 2002

D A T A B A S E M A N A G E M E N T S Y S T E M S

as a massive amount of data – much of it
unneeded – fills the pipeline. In the end,
transparent persistence leads to a per-
formance black hole, requiring substan-
tial work to improve scalability, increase
concurrency, and reduce network traffic.
To gain sufficient control over which
objects stay persistent and which do
not, the ODBMS’s transparent persist-
ence mechanism must be bypassed and
the ODBMS’s proprietary API used
instead. Developers must master the
ODBMS’s proprietary API and then
invest the many hours required for the
complex, trial-and-error process, which
has no guarantee of success.

The hard lesson, often learned at
company expense, is that the ODBMS
used to validate a pilot application must
be replaced by a relational database
when the system goes into production.
That’s the programming equivalent of a
heart transplant, setting development
schedules back by months. As we will
see, relational databases bring their own
set of problems in terms of overhead,
and can require 25–50% more Java code.

RDBMSs:The Frustration of
Object-Relational Mapping

Java developers are hindered by rela-
tional databases; however, RDBMSs do

have two major advantages: a long, suc-
cessful track record of deployment in
scalable, transaction-processing sys-
tems and a standard language, SQL.
While the relational model works well
enough in banking applications where
the row-and-column model reflects the
two-dimensional world of ledgers and
spreadsheets, it has proven more limited
in tracking highly interconnected infor-
mation. Relationship navigation com-
monly used in J2EE applications
requires extensive use of multitable
joins. But joins are computationally
intensive, and each join is computed at
runtime to link information on-the-fly
(see Listing 2). Reconstructing an order
object with its line items from row-and-
column tables requires two SQL queries
and much coding. The same operation
in an object database would require
only one call. Moreover, relational sys-
tems require the rebuilding of relation-
ships between objects each time they’re
accessed, substantially impacting per-
formance.

In today’s economy where business
intelligence is key, the Java object model
provides a more powerful mechanism
for capturing real-world relationships
and concept commonalities. In the rela-
tional model the relationships disap-
pear and are replaced by primary keys;
foreign keys, columns, and indexes; and
often by intermediate tables (see Figure
3).

In response to the demands from
object developers, relational vendors
have extended the relational model to
support objects, much the way C++ was
an object extension of C. But just as C
programmers did not fully embrace
C++, Java programmers have remained
skeptical of object extensions to what is
clearly not an object-oriented environ-
ment.

The underlying model of object-rela-
tional databases remains the same: rows
and columns. As a result, the simplicity
of the object model vanishes because
classes, inheritance, and relationships
must be mapped into tables – a struc-
ture ill-suited to the task. Even a simple
many-to-many relationship between
two classes must be expressed using
intermediate tables, with two associated
indexes. Therefore, a cleanly designed
Java application translated through the
normalization process results in a thick-
et of tables that must be recombined
whenever an object is called by the
application. The process adds signifi-
cant load, especially when executing
extensive table joins.

To solve the problem of mapping
objects into relational databases, a

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 UML diagram of a typical J2EE e-commerce application

FIGURE 2 The downfall of a transparent instantiation mechanism

17MAY 2002

Java COM

Sitraka
www.sitraka.com/jclass/jdj

Java COM

18 MAY 2002

D A T A B A S E M A N A G E M E N T S Y S T E M S

number of OR mapping tools have been
created. While these tools do make it
easier to develop Java applications that
use relational databases, they don’t
eliminate the underlying RDBMS prob-
lems of code complexity and poor per-
formance.

Both database technologies have
limitations for Java programming. A
pure object database makes sense in a
standalone environment in which con-
currency and network traffic are not
issues. Relational databases, while
accommodating transaction-processing
loads, merely simulate a true object
environment.

Hybrid Databases:The Best of Both Worlds
Hybrid databases represent the best

of both worlds: the ability to map
objects from Java directly to the data-
base with the support of a standard
query language (SQL-99) and the scala-
ble, enterprise capabilities implement-
ed in relational database products.
Designed from the ground up as a data-
base server for objects, hybrid databases
directly map the object model of Java as
well as other object programming lan-
guages. Because the database object
model matches perfectly with Java, you
can freely and easily define the database
classes that describe real-world scenar-
ios.

Unlike an RDBMS, a hybrid database
preserves the original Java data model.
For example, a single class and two sub-
classes represent customers, con-
sumers, and business customers,
respectively. No tables are mapped back
into Java objects; no translation of any

kind is needed. Unlike an ODBMS, a
hybrid database enforces a layered
design of the persistent classes. The
operations to manipulate objects are
explicit, enabling you to keep tight con-
trol over the data that’s locked and
instantiated in the JVM, seamlessly
improving the application’s scalability.

Hybrid databases eliminate the mis-
match between the Java and database
environments, while still maintaining
the scalability of server-side processing,
such as relational systems. Within the
J2EE environment, you manipulate Java
objects representing a proxy to the
object in the database by means of
object-to-object mapping. The proxy
objects are pure Java classes that map to
those of the database schema (see
Listing 3). With a hybrid database, the
code stays compact and object-based
(as in Listing 1), providing the same ben-
efit as a first-generation ODBMS. Hybrid
databases don’t require any of the spe-
cial compilation tricks or postprocess-
ing byte code manipulations of
ODBMSs – both of which make it hard to
identify the root cause of performance
degradation.

In a typical application, classes are
highly interconnected, and the graph of
instances can include large portions of
the database. Therefore, controlling
object-locking effectively, always a
challenge in enterprise-class J2EE
applications, is crucial to controlling
the instantiation of Java objects in the
JVM. To build scalable applications,
data-intensive processing needs to take
place where the data sits on the server,
not on the client, further reducing lock-

ing contention as well as network traf-
fic and taking advantage of the faster
processing speeds of many server
architectures.

Like RDBMSs, hybrid databases
support the SQL-99 syntax. While SQL
queries are relational in their syntax,
they take advantage of the object para-
digm by supporting inheritance, poly-
morphism, and true navigation.
Furthermore, the query processing
takes place on the server to enforce
security and achieve performance.
Consider a broad query of two classes
of customers: business and consumer.
The query is issued from the client, exe-
cuted on the server, with selected
objects from each class retrieved to the
client.

This approach gives developers full
access to Java objects through JDBC
without having to learn a proprietary
API (see Listing 4). In this listing, two
customer subclasses, Consumer and
Business, share properties from the par-
ent Customer class while maintaining
properties of their own. A query to
locate “good customers” can combine
criteria – bonus miles for home con-
sumers, a high credit line for businesses
– pulling the information simultaneous-
ly from both subclasses. Unlike an
RDBMS, a hybrid database returns Java
objects through JDBC and natively sup-
ports inheritance.

While developers still benefit from
the power of expression and perform-
ance of SQL queries, these queries elim-
inate the object-relational mapping
layer to reduce source code by 25–50%
and improve application performance.

Unlike first-generation ODBMSs,
hybrid databases can be accessed
through JDBC and ODBC drivers, both
of which support the SQL-99 language,
thereby taking advantage of in-house
SQL expertise. Support for ODBC and
JDBC drivers also allows IT staff to use
off-the-shelf database tools without
having to master SQL.

First Major Optimization: Keep It Simple
Building enterprise-class J2EE appli-

cations with a hybrid database is
straightforward. Here are some consid-
erations to make the process even
smoother:
• Carefully define the object model of

your persistent classes, reflecting the
business model as closely as possi-
ble. That’s common sense in an
object environment, but is even
more crucial in database applica-
tions because the way you define the
model greatly impacts system per-
formance.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 Relational diagram

19MAY 2002

Java COM

Oracle
Corporation

www.oracle.com/javacode

20 MAY 2002

D A T A B A S E M A N A G E M E N T S Y S T E M S

Defining the right level of granular-
ity for your objects has a big payoff in
terms of transaction rate because
only the specific queried data gets
locked.

• Avoid cross-referencing persistent
and transient objects as transient
information can access persistent
information, but not the other way
around. Doing so makes the applica-
tion much more complex to manage
since the persistent objects loaded
from the database may need to be
linked to transient information that’s
not yet available. While a callback can
also be used, it unnecessarily compli-
cates program flow and can usually be
avoided with more ordered layering of
the application.

• Keep transactions as short as possi-
ble. Long transactions will unneces-
sarily lock data for long periods of
time, making it unavailable to other
business transactions.

• In some cases, data is cached by the
middleware, reducing contention, but it
requires “dirty reads” (reading data
without locking) from the database. A
way around this is to use a versioning
facility, which allows a consistent view
of the database any time, even while
users are modifying the current version.

Conclusion
Hybrid databases give developers a

new and important option when select-
ing a database for their J2EE application.
Until now, Java developers have really
had just one viable option: an RDBMS.
Despite the drawbacks of the relational
model, only RDBMSs solved the per-
formance requirements intrinsic to
enterprise applications. As for ODBMSs,
they haven’t even begun to meet these
requirements. Without that, an adapt-
able object model is irrelevant to large-
scale J2EE development.

With hybrid databases, J2EE devel-
opers can demand both: a database that
meets the intrinsic requirements of scal-
ability, high transaction volumes, high-
volume data transfer, and the need for
fast throughput, together with an object
data model that more accurately repre-
sents business processes, now and in
the future.

As the number of J2EE applications
grows, the limitations of RDBMSs and
ODBMSs will become more and more
apparent. Hybrid databases represent
the missing ingredient for broader J2EE
implementation, providing scalability
without compromising Java’s object
environment.

J2
SE

H
om

e
J2

E
E

J2
M

E

AUTHOR BIO
Didier Cabannes,
chief technology

officer at Fresher
Information, is the

chief architect of the
Matisse database, a
hybrid database for

object developers. For
the last 15 years,

he’s focused on
object and database

technology, and
developing and

deploying
mission-critical

object-based
applications in a

variety of
environments. He
holds a master’s

degree in engineering
and has conducted

post-graduate
research in computer

science. didier@fresher.com

pmf.setConnectionURL(dbName);

pm = pmf.getPersistenceManager();

tx = pm.currentTransaction();

tx.begin();

Order odr = new Order("Parrot", 2, 99.95);

pm.makerPersistent(odr); // make the Order persist

Customer cstr = new Customer("Jay", "D", "Ho");

odr.orderedBy = cstr ; // the new Customer now persists by the mean of

attachment

tx.commit();

pm.close();

String select = "select * from Order o where o.odr_id = ?";

pstmt = conn.prepareStatement(select);

pstmt.setLong(1, 10608974);

resultSet = pstmt.executeQuery();

// Construct an instance of Order from its rows

if (resultSet.next()) {

Order odr = new Order(resultSet.getLong("odr_id"),

resultSet.getString("ship_address"),

resultSet.getString("ship_carrier"));

}

resultSet.close();

pstmt.close();

String select = "select * from lineItem l where l.odr_id = ? order by

lt_id";

pstmt = conn.prepareStatement(select);

pstmt.setLong(1, 10608974);

resultSet = pstmt.executeQuery();

// Construct objects from rows

while (resultSet.next()) {

LineItem litem = new LineItem(resultSet.getString("lt_id"),

resultSet.getString("quantity"),

resultSet.getBigDecimal("unit_price"),

resultSet.getString("delivery_mode"),

resultSet.getString("address"));

odr.lineItems.add(litem);

}

resultSet.close();

pstmt.close();

Database db("dbName");

db.open();

db.startTransaction();

Customer cstr = new Customer(db, "Dee", "O", "Haye");

Order odr = new Order(db, "Parrot", 1, 99.95);

odr.setOrderedBy(cstr) ; // the order and the customer are linked together

by a bi-directional relationship

db.commit();

db.close();

String query = "select REF(c) from Customer c where count(orders) > 20" +

"AND ((class Consumer).bonusMiles > 50000 OR" +

"(class Business).creditLine > 10000) ORDER BY lastName";

stmt = conn.createStatement();

resultSet = stmt.executeQuery(select);

while (resultSet.next()) {

Customer cstr = (Customer)resultSet.getObject(1); // instances of

Consumer or Business are actually returned

}

resultSet.close();

stmt.close();

Listing 4: With a hybrid database, SQL queries return objects, not tables

Listing 3: A hybrid database provides compactness and efficiency

Listing 2: The OR mapping layer adds 25–50% of ugly code

Listing 1: Transparent persistence with an ODBMS

Java COM

21MAY 2002

Java COM

Compuware
Corp.

www.compuware.com/products/optimalj

Java COM

22 MAY 2002

Anyone with any application experience knows that the
application development process is fraught with unknowns. In
the networked applications space, the unknowns can be even
more extreme when it comes to the gap between the technical
infrastructure – application servers – and the actual business
requirements. More specifically, the architectural issues alone
in the “developing the application” stage are often left to the
developer or distributed to architectural teams. Several pitfalls
can arise in the critical architectural stage:

• Developers don’t know where to start when building an
application.

Often a developer allows the user interface (UI) to drive the
business requirements and begins to code. A typical mistake is
that the UI developer goes too far when extending the presen-
tation logic with actual business functionality. It then becomes
difficult to decouple the functionality and share it across the
application, or the developer gets backed into a corner when
faced with more difficult issues like data persistence.

• Developers have difficulty with the steps needed to success-
fully build an application.

Even if a development team has been sufficiently trained
in the infrastructure technology, such as WebLogic or

Microsoft DCOM, they’re still left a blank slate when develop-
ment begins. This opens up questions like “Where do I start?”
“How does all of this technology – EJBs or JMS or DCOM or
.NET – help me with what I’m building?” “How do I glue it all
together to get to my end application?” Infrastructure tech-
nology often leaves the developer with more options than
answers.

• Many developers are solving the same technical problems.
Take, for example, an e-commerce site. How are decisions

such as how to maintain a catalog applied across a project? If
the tasks are split up, a developer focused on just one aspect of
the application has his or her own deadlines and likely won’t
have the time or inclination to share this information with
others. From a technical perspective, this evolves into more
critical decisions, such as how to manage data persistence or
validation. For example, “How do I manage input from an
HTML form or data type validation?” “What does my valida-
tion routine look like?” “What is a valid address?” “How do I
call an EJB and what are the steps to do this?” It’s easy to see
how the development team quickly focuses on nitty-gritty
details, not on the application itself. Not only are developers
trying to solve the same problems, they’re also not sharing
these decisions.

J2
SE

H
om

e
J2

E
E

J2
M

E

23MAY 2002

Java COM

Precise Software
www.precise.com/jdj

Java COM

24 MAY 2002

• Project managers don’t know what to expect from develop-
ers.

Take, for example, a developer who tells his or her manag-
er that it will take two months to develop the “user flow expe-
rience.” How does the project manager judge this answer
when he or she doesn’t have insight into the technical deci-
sions to a working application?

• Project managers can’t easily assign work based on devel-
opers’ skills, as the delineation of work is often nebulous.

How do you separate tasks such as business logic from the
user interface or from integration? How do you make sure the
user interface doesn’t extend too far into the business code?
This often forces a developer to tackle more issues than he or
she needs to, such as addressing security and distribution.
Developers start dealing with not just one class but 10 classes
equaling thousands of lines of code and often don’t have the
domain expertise sets to do the work.

• The application is hard to maintain and extend.
Applications built without architecture are extremely diffi-

cult to update, extend, and modify for basic bug fixes and
modifications, as well as for more robust overhauls, to meet
changing business requirements. Developers tasked with
updating applications spend a majority of their time locating
the specific areas they have to change and carefully modifying
those areas so as not to break another part of the application.

• The delineation between the technical details and business
logic or functionality of the application is not clear.

This is most often found when handling persistence
in the application, such as how to interact with

the data store. Do you use EJBs to interact
with the data store or data access objects? Are

you directly calling your EJBs or using Session
Facade for this interaction? If your development team’s

not careful, they’ve coupled those decisions to the application.
Often, trouble is not uncovered until the testing phase. At this
point, the cost of overhauling the application is very high.

The bottom line is that the architectural issues behind
developing enterprise applications are significant. Without a
structure in place, developers are left with undocumented pro-
cedures or a verbal design philosophy to guide their develop-
ment. On top of this, anything ambiguous is left to the team to
work out. The nature of the beast in application delivery is that
deadlines are looming. The end result is the application, not
the document, so teams will cut corners where they need to.

The Importance of Application Architecture
The Role of Application Architecture

Where are the above issues most appropriately addressed?
This is the role of application architecture – a very critical step
in the application-development process. Unfortunately, this
step is often lumped with “develop the application.” The appli-
cation architecture determines how the application is devel-

oped and its rules.
Sometimes the infrastructure provided by J2EE application

servers or the technical plumbing provided by a collection of
third-party class libraries is confused with application archi-
tecture. Infrastructure components are required for an appli-
cation, but their role in a distributed application is to provide
some “technology feature” such as transaction management,
thread management, or distribution. The infrastructure, how-
ever, stops short of determining how the application needs to
behave.

Application architecture gives development teams the
structure for the application and eliminates a significant
amount of the coding effort. This structure shields the devel-
oper from common development mistakes by providing a bet-
ter format that eliminates redundancy and inconsistent code
and by bringing the actual development closer to the business
requirements. Application architecture is reusable across proj-
ects allowing:
• Developer resources to be transferable between projects
• Lower costs due to not reinventing the wheel
• Lower maintenance costs due to a uniform approach
• Lower training costs

In the not so distant past, a developer’s productivity was
measured by how much code he or she wrote. Today, in a
world of increasing development complexity and time
demands, less is more. Less code means less to create, less to
maintain, and less to execute.

Application Architecture Approaches: Ignore It, Build It, or ???
In the long history of enterprise applications, there are two

answers when approaching application architecture issues:

“don’t have one” or “build one.” By definition, architecture is
the structure of an application. If you have an application, you
have an application architecture.

If you chose the “don’t have one” approach, what actually
occurs is architecture that “just happens.” Developers make
critical application decisions in isolation or don’t apply deci-
sions consistently across the application.

If you chose “build one”, whether it’s your first, second, or
third application, the architectural issues you need to address
are significant.
• How are development teams reusing the architecture? How

is it being implemented?
• How is it documented? How do I train development teams

to use it?
• Is it current? How will you port the architecture as the

underlying infrastructure technology changes?
• How do you plan to maintain the current architecture?

How do you plan for continually changing resources?
How do you take advantage of emerging technologies,
such as Web services, if your original resources on the
project left?

• What if consultants don’t want to work with the current
framework because of “spaghetti code” syndrome and are
proposing a new approach?

J2
SE

H
om

e
J2

E
E

J2
M

E

The nature of the beast in

application delivery is that

deadlines are looming.

The end result is the application, not

the document, so teams will cut

corners where they need to”

“

25MAY 2002

Java COM

Canoo
Engineering AG

www.canoo.com/ulc/

Java COM

26 MAY 2002

This is just the beginning. Given that development teams
are measured on the delivery of the application, not on the
“purity” of the architecture, this results in either paper-based
or poorly documented implementations that only get used by
a single programmer or single project. If problems do arise as
a result of the architecture, there’s little chance to correct it. As
development teams generally need to move on to the next
project, there’s little time allocated to perfecting it. If the appli-
cation is functioning, the “if it ain’t broke, don’t fix it” mantra
rings true when it comes to architecture.

Problems with Building Architecture
Revisiting where architecture typically fits in the applica-

tion development life cycle, it’s easy to see why time is a prob-
lem. The architecture is usually squeezed between design and
development. The customer of the application probably does-
n’t care about the architecture and very likely wouldn’t under-
stand it. Because architecture is an intermediate result, quite
often it’s not given the proper attention it deserves. The archi-
tecture is usually the first thing to give way when there’s a
schedule crunch. Typically, the design stage runs over and the
final deadline isn’t flexible. Architecture usually suffers first.

The skills required to build a quality architecture are in
short supply, making the cost to build it prohibitive. Recent
studies show that firms need to budget as much as $3,500 a day
for one architect in the J2EE arena (Forrester Research, “Putting
J2EE to Work,” July 2001). One firm claimed that it would take
them 12 months just to build the development framework
needed to support the application. Architecture marries the
business application to the technology infrastructure, and
requires the architecture builder to be intimately familiar with
application building and the technical infrastructure.

The last problem encountered when building an architec-
ture is the need for iterative development. Consider the evo-

lution of the application develop-
ment life cycle. Not too long

ago, the waterfall approach
was very popular. This

approach broke the work into large chunks (requirements,
design, development, etc.) that were done sequentially over
a long period of time. The current trend in application devel-
opment is to use an iterative approach. The steps taken are
similar to the old process (e.g., requirements, design, devel-
opment, etc.) but they’re executed in an iterative fashion
over short periods of time. Using small iterations means
results are seen sooner and feedback is incorporated more
often, resulting in a better product. This same approach is
required for a high-quality architecture. Iterations are
required to refine the architecture and prove its validity.
However, architecture iterations are close to impossible to
incorporate into an application development life cycle
because of the logistics involved. The developer training,
application rewrites, and delivery schedule hinder incorpo-
rating architecture iterations.

Results of Building – The 3 Ps
The building process results in three types of architec-

ture: a paper one, one that a single programmer uses, or one
that a single project uses – paper, programmer, project – the
3Ps.

The paper architecture is actually not an architecture; that
is, it isn’t physical code, therefore it leaves the developer at
square one when it comes time to build it. Paper architectures
usually result when there’s a central think-tank group that
determines the overall technical direction. While important
architectural decisions are made, the actual code still needs to
be written for the architecture.

The programmer architecture involves an individual pro-
grammer who builds the application architecture. More
than likely other programmers on the same team are solving
the same problems in their parts of the application. So you
have a single project with little or no consistency across
developers.

The project architect is the best possible outcome in a
build situation. The need for an architecture has been recog-
nized, but the architecture is likely limited to the project for
which it was built. Because the architecture was made to
solve the problems of one project, it probably won’t be
reusable across other projects. Since the architecture wasn’t a
tangible goal of the project, it likely won’t be documented nor
will it continue to evolve. In short, it starts and ends with the
project.

Buying Application Architecture
Why do companies historically build architectures?

Usually, there’s no alternative. If the infrastructure technol-
ogy used by a company is unique, then it’s not likely that
they would find a commercially available architecture to
support the infrastructure. However, with infrastructure
standardizing around platforms like J2EE and .NET, buying
an application architecture is a viable alternative. It not only
eliminates the build challenges discussed earlier, it also pro-
vides many benefits such as best practices, future-proofing

of the application, significant costs savings, and quicker
time-to-market.

Best Practices
Best practices for application architecture include those for

developing code as well as for solving the architectural prob-
lems. Becoming familiar with these best practices is done
through experience and shared industry expertise. In the world
of enterprise applications, an increasingly important source of
this industry expertise is design patterns, such as the J2EE
Blueprints or object-oriented patterns. Design patterns capture
a problem definition and a possible solution in a textual format,
allowing people to share their experiences with others to avoid
similar problems. Implementing these patterns while staying
on top of best practices requires constant attention that only a
vendor who is providing the solution can realistically afford.

J2
SE

H
om

e
J2

E
E

J2
M

E

As companies build

more sophisticated

enterprise applications,

proceeding without a

proven architecture

will be folly”

“

27MAY 2002

Java COM

SpiritSoft
www.spiritsoft.com/climber

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

CHIEF OPERATING OFFICER
MARK HARABEDIAN mark@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

NANCY VALENTINE nancy@sys-con.com
EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

LEAD DESIGNER
LOUIS F. CUFFARI louis@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

ASSISTANT ART DIRECTOR
TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com

A C C O U N T I N G
CHIEF FINANCIAL OFFICER

BRUCE KANNER bruce@sys-con.com
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE

JAN BRAIDECH jan@sys-con.com
ACCOUNTS PAYABLE

JOAN LAROSE joan@sys-con.com
ACCOUNTING CLERK

BETTY WHITE betty@sys-con.com
S Y S - C O N E V E N T S

VICE PRESIDENT, SYS-CON EVENTS
CATHY WALTERS cathyw@sys-con.com

CONFERENCE MANAGER
MICHAEL LYNCH mike@sys-con.com

SALES EXECUTIVES, EXHIBITS
MICHAEL PESICK michael@sys-con.com

RICHARD ANDERSON richard@sys-con.com
C U S T O M E R R E L A T I O N S / J D J S T O R E

MANAGER, CUSTOMER RELATIONS/JDJ STORE
ANTHONY D. SPITZER tony@sys-con.com

Java COM

28 MAY 2002

Future-Proofing Applications
A good application architecture will provide a longer life

for your application. Incorporated as a product, the architec-
ture allows the application to easily adopt new functionality
and isolates the application from technology changes
whether it’s upgrading to a new version of a J2EE application
server or taking advantage of emerging Web services func-
tionality.

Less Time and Lower Cost
A very immediate benefit of purchasing an application

architecture is lowering the cost of building the application
and accelerating the application creation. Many companies
are realizing that it’s taking 12 months just to get their devel-
opment framework or application architecture implemented.
That’s not even taking into account the actual construction of
the business application itself.

A good application architecture product needs:
• To be tested, proven, and built on industry best practices
• To have extensive documentation
• To be supported by a company that’s focused on providing

architecture and that will continue to maintain and extend
the offering

• To provide formal training to get the application team up to
speed quickly

Just as in the early days of object-oriented, Java, and Web
application development, many companies attempted to
build their own distributed services (load balancing, security,
dynamic page generation, and scripting) to support their
applications. Tackling this in-house was cost-prohibitive, in
terms of time-to-market and maintenance, and opened a
door for an application server market in which lead vendors
assumed the role of providing this infrastructure (BEA, IBM,
and others). Can you imagine having a conversation with
your CIO about wanting to build your own application serv-
er?

As companies build more sophisticated enterprise appli-
cations, proceeding without a proven architecture will be
folly. How you approach application architecture and address

its considerations across the application, as well as across
future applications, is increasingly critical to your overall
success.

Conclusion
Application architecture is critical to the initial suc-

cess of an application and the ongoing success of main-
taining and extending it. Companies have historically
built their own development frameworks with varying

degrees of success. With no other options available, devel-
opment teams were left to poorly documented, unrepeat-

able application architectures.
As standard technical infrastructures such as J2EE and

.NET continue to mature over time, development teams
will gather more enterprise experience grappling with
how best to divide up work tasks, utilize the infrastructure
technology, and deliver applications on time. With grow-
ing industry acceptance of these infrastructures, vendors
are delivering tools and frameworks to ease the next level
of application development for many project teams,
allowing them to focus on the business requirements at
hand and obviating the need to deal with what will soon
become mundane development tasks. Nowhere will this
be more apparent than in the area of application architec-
ture.

J2
SE

H
om

e
J2

E
E

J2
M

E

whurst@wakesoft.com

AUTHOR BIO
Walter Hurst is the
CTO and cofounder

of Wakesoft, a
provider of prebuilt

application
architecture and

frameworks for J2EE.
He received a BS

in computer
engineering from the

University of
Michigan.

29MAY 2002

Java COM

SilverStream
Software

www.silverstream.com/coals

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

Sun’s seventh annual JavaOne con-
ference was held March 25–28 at
the Moscone Center in downtown

San Francisco. This was the sixth Java
conference I attended and it was inter-
esting to compare it with the previous
shows.

It’s All About Networking
JavaOne, as always, is a great confer-

ence for networking. And I don’t mean
the networking that requires wires for
connectivity. I’m referring to people
hooking up with others who are using
the Java platform to solve business
problems. This JavaOne was no differ-
ent. I chatted with several attendees
about what they expected from the con-
ference, and what they got out of it.

The majority felt the conference was
a great way to generate leads and to get
an idea of who else was leveraging Java
and how; shared experiences, war sto-
ries, and potential alliances were some
of the outcomes. Many of the attendees
who had been at previous JavaOnes felt
the sessions were not as exciting as in

the past. However, the
majority felt that the
exhibition hall and the
vendor demos were very
interesting. Many felt
that by attending the conference, they
had generated leads they normally
wouldn’t have. On the other hand, the
information in the sessions could have
easily been picked up on the Internet.
Most attendees felt that their trip to
JavaOne gave them a better understand-
ing of what’s available in the market to
build real-world applications.

Based on estimates at Sun’s site,
there were:
• Over 50 countries represented
• Over 350 members of the press
• 35 cosponsors
• 200 exhibitors

• 10 media cosponsors
• 300 in-depth technical sessions
• 200 birds-of-a-feather sessions

Attendance
My first impression was that atten-

dance was down, and the atmosphere
was more sober than in previous years.
The obvious reason for this was that
companies have cut back on spending
and it’s hard to justify using already-
stretched resources. Another thing of
note was that international representa-
tion was not as high as in previous years.
Again, with concerns over safety and
travel expenses, this wasn’t unexpected.

In addition, the conference took
place during the week of
Passover, ruling out atten-
dance from the Jewish
community. This year’s
attendance seemed domi-
nated by the Bay area folks
and seemed to consist of
seasoned developers who
were involved in the devel-
opment of real-world ap-
plications. I didn’t come
across many newbies in the
crowd.

First Impressions
2002 Show Review

30 MAY 2002

Java COM

WRITTEN BY AJIT SAGAR

Jim Balsillie John Gage Scott Relf Scott McNealy James Gosling Amit Pau

31MAY 2002

Java COM

Altova
www.altova.com

Java COM

32 MAY 2002

The Message
The message was clear. Sun’s new

logo “We make the Net work” seems a lot
more palatable than “The network is the
computer.” The Java platform is coming
of age and it’s all about enabling the
development of distributed applica-
tions. The maturity of the products dis-
played in the exhibition hall was quite
apparent. The main additions to the
platform consisted mostly of the
enabling APIs for developing Web ser-
vices. Web services, wireless connectivi-

ty, and enterprise applications based on
J2EE were the cornerstones of the con-
ference.

Keynotes
Besides Sun’s keynote presentations

on the vision of Java technology and
Web services, additional themes cen-
tered around the role of Java in wireless
and small devices, enterprise integra-
tion, and telecommunications. Unlike
last year, when the keynotes focused on
Web services – then the brand-new fad

– I felt they were more balanced this
year. Monday’s presentation indicated
that Sun was supporting Web services
initiatives, and the Java platform has
ample specifications and tools coming
down the pipe to support building dis-
tributed applications based on Web
services.

Technology Showcase
The Sharp Zaurus PDA, bundled

with the Linksys 802.11b wireless net-
work card, was the official device pro-
moted this year. It was available to
attendees at a special show price of
$299, way below market price. The
Technology Showcase featured Per-
sonalJava technology, SOAP, Web serv-
ices, JXTA, JXTA for J2ME, and an
802.11b wireless network. Developers
used this device to work through the
competitions hosted at the conference
– “What Time Is It?” and the “Hack-
athon.”

J2
SE

H
om

e
J2

E
E

J2
M

E

Ernie Cormier Rob Gingell Alfred Chuang Hasso Plattner Rich Green Bill Boggess

INT, Inc
www.int.com

33MAY 2002

Java COM

DataDirect
Technologies
www.datadirect-technologies.com

Java COM

34 MAY 2002

Session Themes
As mentioned earlier, Web services

was one of the themes of the conference,
but the content of the sessions was
much more balanced. I attended some
of the sessions under the “Java
Technologies, Products, Solutions, and
You” track and was quite happy to find
that others in the industry have faced
similar victories and defeats with Java
technologies. Overall, the real-world
examples of applications were reassur-
ing, as they indicated the commitment
Java has from leading companies
around the world.

There were few sessions on new APIs
for the simple reason that the Java plat-
form hasn’t added major modules to the
framework. This is a good thing, as it
indicates a maturing of the platform.
Sessions that introduced new modules
centered around Java 1.4, EJB2.1, the
Java XML Service Pack, and the Sun ONE
Web Services initiative. There were also
several interesting sessions on Java

design patterns, archi-
tecture, and language
usage.

Pavilion
The pavilion was, for

me, the most interesting part of the
show. I met with most of the vendors on
the exhibit floor and was very
impressed by the products coming out
in the Java market. They are less experi-

mental and more geared
toward supporting serious
developers working on seri-
ous applications. The Java
tools market has matured a
lot in the past couple of

years. This was evident by the fact that
most of the IDE vendors were exhibiting
tools that addressed integrated applica-
tion development (instead of stand-
alone), enterprise application testing,

J2
SE

H
om

e
J2

E
E

J2
M

E

Capella
University
www.capellauniversity.edu

debugging, and logging. The design tools offer environ-
ments that allow developers and business process mod-
elers to work at more abstract levels. The application
server vendors who showed up at the conference are the
ones who have emerged with solid products in the Java
market.

The vendor booths were more spread out in the
exhibit hall, primarily because there were fewer vendors
than in previous years. However, there was traffic
throughout the day, which indicated that most of the
attendees were seriously interested in what the vendors
had to offer. It also seems like marketing budgets have
been replenished, as there were more toys, T-shirts, etc.,
handed out.

SYS-CON Radio
At SYS-CON’s popular radio booth, leading vendors

and industry luminaries were interviewed throughout
the day. I interviewed several of the vendor representa-
tives and, overall, the mood was enthusiastic and upbeat.

All in all, this year’s JavaOne was a testimony to how
far Java has come toward becoming a mature and
robust platform that’s widely adopted by the comput-
ing industry.

This year’s JavaOne was a
testimony to how far Java has

come toward becoming a mature
and robust platform

“
”

Paul Saffo Blake Stone Patricia Sueltz Jason Hunter Jeff Jackson Ivo Toter

35MAY 2002

Java COM

AltoWeb
www.altoweb.com

keith.brown@sys-con.com

If you read my editorial last month (JDJ,
Vol. 7, issue 4), you’ll recall that I was
trying to work out just who the Java

community was and whether or not you or
I feel a part of it. Well, I think I met the
community at JavaOne 2002.

During JavaOne we spoke to over 100
people at SYS-CON Radio, and recorded
and uploaded these conversations to JDJ’s
Web site. Some are more interesting than
others, and some have more to offer the
Java developer.

There’s a lot of jargon to wade through
in these interviews and it’s often tricky to
identify what it all means.

Two years ago, the big thing that so
many companies were talking about was
application servers and how they were
going to save the world. That area of the
Java world has now consolidated and the
emphasis at JavaOne had progressed to
the next stage – software to analyze our
software!

There was a major focus on testing and
performance tools. Java technology has
matured to a point where applications and
systems are now so widespread that the
market is demanding tools to fine-tune
the software’s efficiency and performance.

We’ve built the house. Now we need to
find out where those drafts are coming
from and fit some double-glazing.

Besides the software-tuning vendors,
it’s always interesting to speak to authors
and discuss their specific topics. As
authors, they tend to be effective commu-
nicators and speak in a language develop-
ers are used to.

Adam Kolawa spoke to us animatedly
about his new book, Bulletproofing Web
Applications (coauthored by Kolawa,

Wendell Hicken, and Cynthia Dunlop and
published by Hungry Minds, Inc.), and
how we, as developers, can ensure our
Web applications are reliable and consis-
tent. The book contains an interesting sec-
tion on JSP, and the interview is well worth
a listen (www.sys-con.com/java/javaone
2002b.cfm).

Iain Shiegoka also gave a good
overview of Java instant messaging and
explains what it’s like to write these types
of books. His book, Instant Messaging in
Java (Manning Publications), concen-
trates on the open source Jabber XML-
based IM protocols (www.sys-con.com/
java/javaone2002c.cfm).

It was also nice to see a few familiar
faces at the SYS-CON Radio booth,
including Ralf Dossmann from Borland,
the first person I ever interviewed; that
first interview was two years ago at the
IBM Java Conference in Austria. Further
evidence that the Java community not
only exists, but is also persistent!

In addition to talking with exhibitors
and attendees at the conference, there’s
also a lot of socializing, a little gossip, and
a bit of eavesdropping – it can’t be helped.

One interesting discussion I overheard
was about Swing’s JTree component. The
basic gist of the debate – that I might,
slightly tongue in cheek, agree with – was
that JTree should have a certification pro-
gram all its own. Perhaps a Sun Certified
JTree Developer badge will be my next
goal. Anyone who has wrestled with the
JTree and come out alive will know that it’s
not a particularly easy task to produce the
tree you want. I was glad to hear others
had the same experience. You’re not
alone!

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

We’ve Built the House

KEITH BROWN J2SE EDITOR

36 MAY 2002

J 2 S E I N D E XX

We’ve Built the House
If you read my editorial

last month (JDJ, Vol. 7, issue
4), you’ll recall that I was try-

ing to work out just who the
Java community was and

whether or not you or I feel a
part of it. Well, I think I met

the community at
JavaOne 2002.

by Keith Brown

Programming Neural
Networks in Java

How to construct a simple,
yet particle, neural network in

Java that can recognize
handwritten letters, and

implement a neural network
in a small sample program.

by Jeff Heaton

Better Scaling with
New I/O

With J2SE version 1.4,
Java finally has a scalable I/O
API. This article shows how to

write a simple Web server
with both the new and the

old API.
by Hendrik Schreiber

JDBC 3.0 –
Something for Everyone

There was no
ticker tape parade to accom-
pany the release of the JDBC

3.0 specification, but many
will be pleasantly surprised
at its list of enhancements

that include everything from
performance-tuning options

to support for extended-level
database features.

by John Goodson

36

38

46

56

Java COM

AUTHOR BIO
Keith Brown has been involved with Java for many years.When he’s not coding up client solutions for a European Java company,

he can be found lurking in the corridors of conferences all around the world.

37MAY 2002

Java COM

Addison-Wesley

Java COM

38 MAY 2002

Programming Neural Networks in Java

A R T I F I C I A L I N T E L L I G E N C E

In the field of computer science, artifi-
cial intelligence attempts to give comput-
ers human abilities. One of the primary
means by which computers are endowed
with humanlike abilities is through the
use of a neural network, which the human
brain is the ultimate example of. The
human brain consists of a network of over
a billion interconnected neurons. These
are individual cells that can process small
amounts of information and then activate
other neurons to continue the process.
However, the term neural network, as it’s
normally used, is actually a misnomer.
Computers attempt to simulate a neural
network. However, most publications use
the term neural network rather than arti-
ficial neural network.

This article shows how to construct a
neural network in Java; however, they
can be constructed in almost any pro-
gramming language. Most publications
about neural networks use such com-
puter languages as C, C++, Lisp, or
Prolog. Java is actually quite effective as
a neural network programming lan-
guage. This article shows you a simple,
yet particle, neural network that can rec-
ognize handwritten letters, and
describes the implementation of a neu-
ral network in a small sample program.
(All sample programs and source code
for this article can be downloaded from
www.sys-con.com/java/sourcec.cfm.)

Recognizing Letters
Using the sample program (shown in

Figure 1) you can see a neural network
in action. For ease of distribution, the
class files are packaged into a single JAR
file named OCR.jar. To run the program,
use the following command (assuming
you’re in the same directory as the JAR
file). Some systems may allow you to
simply double-click the JAR file.

java -classpath OCR.jar MainEntry

When the letter-recognition program
begins, there’s no data loaded initially. A
training file must be used that contains
the shapes of the letters. An example
training file (sample.dat) is preloaded
with the 26 capital letters. To see the
program work, click the “Load” button,
which loads the sample.dat file. Now 26
letter patterns are in memory and the
network must be trained. Click the
“Begin Training” button; now the net-
work is ready to recognize characters.
Draw any capital letter you like and click
“Recognize”; the program should now
recognize the letter.

Training the Sample Program
Maybe my handwriting is consider-

ably different than most people’s. (My first
grade teacher would certainly say so.)
What if you want to train the program
specifically for your handwriting? To
replace a letter that’s already defined, you
must select and delete that letter first.
Pressing the “Delete” button does this.
Now draw the character you wish to train
the program for. If you’d like to see this
letter downsampled before you add it,
click the “Downsample” button. If you’re
happy with your letter, click the “Add”
button to add it to the training set. To save
a copy of your newly created letters, click
the “Save” button and they’ll be written to
the Sample.dat file.

Once you’ve entered all the letters
you want, you must now “train” the neu-
ral network. Up to this point you’ve sim-
ply provided a training set of letters
known as input patterns. With these
input patterns, you’re now ready to train
the network, which could take a lot of
time. However, since only one drawing
sample per letter is allowed, this process

will be completed in a matter of sec-
onds. A small popup will be displayed
when training is complete. When you
save, only the character patterns are
saved. If you load these same patterns
later, you must retrain the network.

You’ll now be shown how this exam-
ple program is constructed, and how you
can create similar programs. The file
MainEntry.java contains the Swing
application that makes up this applica-
tion, which is little more than placing the
components at their correct locations.

The three areas this article focuses
on are downsampling, training, and
recognition. Downsampling, an algo-
rithm used to reduce the resolution of
the letters being drawn, is used for char-
acter recognition and training, so we’ll
address this topic first.

Downsampling the Image
All images are downsampled before

being used, which prevents the neural
network from being confused by size and
position. The drawing area is large enough
so you could draw a letter in several differ-
ent sizes. By downsampling the image to a
consistent size, it won’t matter how large
you draw the letter, as the downsampled
image will always remain a consistent size.
This section shows how this is done.

When you draw an image, the pro-
gram first draws a box around the
boundary of your letter. This allows the
program to eliminate all the white space
around your letter. This process is done
inside the “downsample” method of the
Entry.java class. As you draw a character,
this character is also drawn onto the
“entryImage” instance variable of the
Entry object. To crop this image and
eventually downsample it, we must grab
the bit pattern of the image. This is done
using a PixelGrabber class:

WRITTEN BY
JEFF HEATON

Computers can perform many operations a lot faster
than humans. However, there are many tasks in which the com-
puter falls considerably short. One such task is the interpretation
of graphic information.A preschool child can easily tell the differ-
ence between a cat and a dog, but this simple problem confounds
today’s computers.

An efficient way to perform certain operations

J2
SE

H
om

e
J2

E
E

J2
M

E

39MAY 2002

Java COM

ESRI
www.esri.com/mapobjectsjava

Java COM

40 MAY 2002

A R T I F I C I A L I N T E L L I G E N C E

int w = entryImage.getWidth(this);

int h = entryImage.getHeight(this);

PixelGrabber grabber = new

PixelGrabber(entryImage,

0,0,w,h,true);

grabber.grabPixels();

pixelMap = (int[])grabber.getPixels();

After this code completes, the
pixelMap variable, which is an array of
int datatypes, now contains the bit pat-
tern of the image. The next step is to
crop the image and remove any white
space. Cropping is implemented by
dragging four imaginary lines from the
top, left, bottom, and right sides of the
image. These lines will stop as soon as
they cross an actual pixel. By doing this,
these lines snap to the outer edges of the
image. The hLineClear and vLineClear
methods both accept a parameter that
indicates the line to scan, and returns
true if that line is clear. The program
works by calling hLineClear and
vLineClear until they cross the outer
edges of the image. The horizontal line
method (hLineClear) is shown here.

protected boolean hLineClear(int y)

{

int w = entryImage.getWidth(this);

for (int i=0;i<w;i++) {

if (pixelMap[(y*w)+i] !=-1)

return false;

}

return true;

}

As you can see, the horizontal line
method accepts a y coordinate that
specifies the horizontal line to check.
The program then loops through each x
coordinate on that row, checking for
any pixel values. The value of -1 indi-
cates white, so it’s ignored. The
“findBounds” method uses “hLine-
Clear” and “vLineClear” to calculate the
four edges. The beginning of this
method is shown here:

protected void findBounds(int w,inth)

{

// top line

for (int y=0;y<h;y++) {

if (!hLineClear(y)) {

downSampleTop=y;

break;

}

}

// bottom line

for (int y=h-1;y>=0;y--) {

if (!hLineClear(y)) {

downSampleBottom=y;

break;

}

}

You can see how the program calcu-
lates the top and bottom lines of the crop-
ping rectangle. To calculate the top line,
the program starts at 0 and continues to
the bottom of the image. As soon as the
first nonclear line is found, the program
establishes this as the top of the clipping
rectangle. The same process, only in
reverse, is carried out to determine the
bottom of the image. The processes to
determine the left and right boundaries
are carried out in the same way.

Now that the image has been cropped,
it must be downsampled. This involves
taking the image from a larger resolution
to a 5x7 resolution. To reduce an image to
5x7, think of an imaginary grid being
drawn over the high-resolution image.
This divides the image into rectangular
sections, five across and seven down. If
any pixel in a section is filled, the corre-
sponding pixel in the 5x7 downsampled
image is also filled. Most of the work done
by this process is accomplished inside the
“downSampleQuadrant” method shown
here.

protected boolean down-

SampleQuadrant(int x,int y)

{

int w =entryImage.getWidth(this);

int startX =(int)

(downSampleLeft+(x*ratioX));

int startY = (int)

(downSampleTop+(y*ratioY));

int endX = (int)(startX +

ratioX);

int endY = (int)(startY +

ratioY);

for (int yy=startY;yy<=endY;yy++

) {

for (int xx=startX

;xx<=endX;xx++) {

int loc = xx+(yy*w);

if (pixelMap[loc]!= -1)

return true;

}

}

return false;

}

The “downSampleQuadrant” me-
thod accepts the section number that
should be calculated. First the starting
and ending x and y coordinates must be
calculated. To calculate the first x coor-
dinate for the specified section, first the
“downSampleLeft” is used; this is the left
side of the cropping rectangle. Then x is
multiplied by “ratioX”, the ratio of how
many pixels make up each section. This
allows us to determine where to place
“startX”. The starting y position, “startY”,
is calculated by similar means. Next the
program loops through every x and y
covered by the specified section. If even
one pixel is determined to be filled, the
method returns true, which indicates
that this section should be considered
filled.

The “downSampleQuadrant” met-
hod is called in succession for each sec-
tion in the image. This results of the
sample image are stored in the
“SampleData” class, a wrapper class that
contains a 5x7 array of Boolean values.
It’s this structure that forms the input to
both training and character recognition.

Neural Network Recognition
There are many types of neural net-

works, and most are named after their
creators. I’ll be using a Kohonen neural
network, a two-level network (see Figure
2). The downsampled character pattern
drawn by the user is fed to the input neu-
rons. There’s one input neuron for every
pixel in the downsampled image. Because
the downsampled image is a 5x7 grid,
there are 35 input neurons.

Through the output neurons, the
neural network communicates which

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 The character recognition program

FIGURE 2 A small Kohonen network

41MAY 2002

Java COM

Dice
www.dice.com

Java COM

42 MAY 2002

A R T I F I C I A L I N T E L L I G E N C E

letter it thinks the user drew. The num-
ber of output neurons always matches
the number of unique letter samples
that were provided. Since 26 letters were
provided in the sample, there will be 26
output neurons. If this program were
modified to support multiple samples
per letter, there would still be 26 output
neurons, even if there were multiple
samples per letter.

In addition to input and output neu-
rons, there are also connections
between the individual neurons. These
connections are not all equal. Each is
assigned a weight, which is ultimately
the only factor that determines what the
network will output for a given input
pattern. To determine the total number
of connections, multiply the number of
input neurons by the number of output
neurons. A neural network with 26 out-
put neurons and 35 input neurons
would have a total of 910 connection
weights. The training process is dedicat-
ed to finding the correct values for these
weights.

The recognition process begins
when the user draws a character and
then clicks the “Recognize” button. First
the letter is downsampled to a 5x7
image. This image must be copied from
its two-dimensional array to an array of
doubles that will be fed to the input neu-
rons.

entry.downSample();

double input[] = new double[5*7];

int idx=0;

SampleData ds = sample.getData();

for (int y=0;y<ds.getHeight();y++)

{

for (int x=0;x<ds.getWidth();x++

) {

input[idx++] =

ds.getData(x,y)?.5:-.5;

}

}

This code does the conversion.
Neurons require floating point input. As
a result, the program feeds it the value of
5 for a white pixel and -5 for a black
pixel. This array of 35 values is fed to the

input neurons by passing the input
array to the Kohonen’s “winner”
method. This returns which of the 35
neurons won and is stored in the “best”
integer.

int best = net.winner (input , norm-

fac , synth) ;

char map[] = mapNeurons();

JOptionPane.showMessageDialog(this,

" " + map[best] + " (Neuron #"

+ best + " fired)","That Letter Is",

JOptionPane.PLAIN_MESSAGE);

Knowing the winning neuron is not
too helpful because it doesn’t show you
which letter was recognized. To line up
the neurons with their recognized let-
ters, each letter image the network was
trained from must be fed into the net-
work and the winning neuron deter-
mined. For example, if you were to feed
the training image for “J” into the neural
network, and the winning neuron were
neuron #4, you would know that it’s the
one that had learned to recognize J’s
pattern. This is done by calling the
“mapNeurons” method, which returns
an array of characters. The index of each
array element corresponds to the neu-
ron number that recognizes that charac-
ter.

Most of the actual work performed
by the neural network is done in the
winner method. The first thing the win-
ner method does is normalize the inputs
and calculate the output values of each
output neuron. The output neuron with
the largest output value is considered
the winner. First the “biggest” variable is
set to a very small number to indicate
there’s no winner yet.

biggest = -1.E30;

for (i=0 ; i<outputNeuronCount;

i++) {

optr = outputWeights[i];

output[i] = dotProduct (input ,

optr) * normfac[0]

+ synth[0] *

optr[inputNeuronCount] ;

// Remap to bipolar(-1,1 to

0,1)

output[i] = 0.5 * (output[i] +

1.0) ;

if (output[i] > biggest) {

biggest = output[i] ;

win = i ;

}

Each output neuron’s weight is cal-
culated by taking the dot product of
each output neuron’s weights to the
input neurons. The dot product is calcu-
lated by multiplying each of the input
neuron’s input values against the
weights between that input neuron and
the output neuron. These weights were
determined during training, which is
discussed in the next section. The out-
put is kept, and if it’s the largest output
so far, it’s set as the “winning” neuron.

As you can see, getting the results
from a neural network is a quick process.
Actually determining the weights of the
neurons is the complex portion of this
process. Training the neural network is
discussed in the following section.

How the Neural Network Learns
Learning is the process of selecting a

neuron weight matrix that will correctly
recognize input patterns. A Kohonen
neural network learns by constantly
evaluating and optimizing a weight
matrix. To do this, a starting weight
matrix must be determined. This matrix
is chosen by selecting random numbers.
Of course, this is a terrible choice for a
weight matrix, but it gives a starting
point to optimize from.

Once the initial random weight
matrix is created, the training can begin.
First the weight matrix is evaluated to
determine what its current error level is.
This error is determined by how well the
training input (the letters that you creat-
ed) maps to the output neurons. The
error is calculated by the “evaluateErrors”
method of the KohonenNetwork class. If
the error level is low, say below 10%, the
process is complete.

When the user clicks the “Begin
Training” button, the training process
begins with the following code:

int inputNeuron = MainEntry.DOWN

SAMPLE_HEIGHT*

MainEntry.DOWNSAMPLE_WIDTH;

int outputNeuron = letter

ListModel.size();

This calculates the number of input
and output neurons. First, the number
of input neurons is determined from the
size of the downsampled image. Since
the height is 7 and the width is 5, the
number of input neurons will be 35. The
number of output neurons matches the

J2
SE

H
om

e
J2

E
E

J2
M

E

Learning is the process of selecting
a neuron weight matrix that will

correctly recognize input patterns
“

”

43MAY 2002

Java COM

Rational
Software

www.rational.com/offer/javacd2

Java COM

44 MAY 2002

A R T I F I C I A L I N T E L L I G E N C E

number of characters the program has
been given.

This is the part of the program that
could be modified if you want it to
accept and train from more than one
sample per letter. For example, if you
wanted to accept four samples per let-
ter, you’d have to make sure that the
output neuron count remained 26, even
though 104 input samples were provid-
ed to train with (4 for each of the 26 let-
ters).

Now that the size of the neural net-
work has been determined, the training
set and neural network must be con-
structed. The training set is constructed
to hold the correct number of “sam-
ples.” This will be the 26 letters provid-
ed.

TrainingSet set = new Train-

ingSet(inputNeuron,outputNeuron);

set.setTrainingSetCount(letterList-

Model.size());

Next, the downsampled input
images are copied to the training set;
this is repeated for all 26 input patterns.

for (intt=0;t<letterListModel.

size();t++) {

int idx=0;

SampleData ds = (SampleData)

letterListModel.getElementAt(t);

for (int y=0;y<ds.getHeight();y++

) {

for (int x=0;x<ds.getWidth();x++

) {

set.setInput(t,idx++,ds.getData(x,y)?.

5:-.5);

}

}

}

Finally the neural network is con-
structed and the training set is assigned,
so the “learn” method can be called.
This will adjust the weight matrix until
the network is trained.

net = new

KohonenNetwork(inputNeuron,output

Neuron,this);

net.setTrainingSet(set);

net.learn();

The learn method will loop up to
an unspecified number of iterations.
Because this program only has one
sample per output neuron, it’s
unlikely that it will take more than
one iteration. When the number of
training samples matches the output
neuron count, training occurs very
quickly.

n_retry = 0 ;

for (iter=0 ; ; iter++) {

A method, “evaluateErrors”, is
called to evaluate how well the current
weights are working. This is deter-
mined by looking at how well the
training data spreads across the out-
put neurons. If many output neurons
are activated for the same training
pattern, then the weight set is not a
good one. An error rate is calculated,
based on how well the training sets
are spreading across the output neu-
rons.

evaluateErrors (rate , learnMethod

, won ,

bigerr , correc , work) ;

Once the error is determined, we
must see if it is below the best error
we’ve seen so far. If it is, this error is
copied to the best error, and the neuron
weights are also preserved.

totalError = bigerr[0] ;

if (totalError < best_err) {

best_err = totalError ;

copyWeights (bestnet , this

) ;

}

The total number of winning neu-
rons is then calculated, allowing us to
determine if no output neurons were
activated. In addition, if the error is
below the accepted quit error (10%), the
training stops.

winners = 0 ;

for (i=0;i<won.length;i++)

if (won[i]!=0)

winners++;

if (bigerr[0] < quitError)

break ;

If there is not an acceptable number
of winners, one neuron is forced to win.

if ((winners <

outputNeuronCount) &&

(winners <

train.getTrainingSetCount())

) {

forceWin (won) ;

continue ;

}

Now that the first weight matrix has
been evaluated, it’s adjusted based on its
error. The adjustment is slight, based on
the correction that was calculated when
the error was determined. This two-step
process of adjusting the error calculation
and adjusting the weight matrix is con-
tinued until the error falls below 10%.

adjustWeights (rate ,

learnMethod , won , bigcorr, correc)

;

This is the process by which a neural
network is trained. The method for
adjusting the weights and calculating
the error is shown in the KohonenNet-
work.java file.

Conclusion
The example presented here is very

modular. The neural network Java files
contained in this example are
KohonenNetwork.java, Network.java, and
TrainingSet.java. These files do not per-
tain to character recognition. The other
files are responsible for the user interface
and downsampling. One limitation men-
tioned in the article is that only one draw-
ing can be defined per character. The
underlying Kohonen network classes
would easily support this feature. This is
something that could be added to the
user interface with a few more classes.

Neural networks provide an efficient
way of performing certain operations
that would otherwise be very difficult.
Consider how a character recognition
program would work without neural
networks. You’d likely find yourself writ-
ing complex routines that traced out-
lines, analyzed angles, and did other
graphical analysis. Neural networks
should be considered anytime complex
patterns must be recognized. These pat-
terns don’t need to be graphical in
nature. Any form of data that can have
patterns is a candidate for a neural net-
work solution.

AUTHOR BIO
Jeff Heaton, a

software designer for
the Reinsurance

Group of America
(RGA), is a member

of the IEEE and a
Sun-certified Java

programmer. He’s the
author of

Programming
Spiders, Bots, and

Aggregators in Java. heatonj@heat-on.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Neural networks should be
considered anytime complex
patterns must be recognized
“

”

45MAY 2002

Java COM

Prentice Hall PTR
www.newatlanta.com

Java COM

Better Scaling with New

T h e e n d o f t h e t h r e a d / s o c k e t m a r r i a g e
written by Hendrik Schreiber

ith

J2SE

version

1.4, Java

finally has

a scalable I/O

API. Not that

the old API was

an absolute

failure (Java’s

tremendous success

in the application

server market refutes

this), but some of the old

API’s properties led to drastic

restrictions. The worst one

was the blocking I/O.

I/O

Java COM

46 MAY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Java COM

MAY 2002 47

Java COM

To write data over a socket, you have to call the write()
method of an associated OutputStream. This call returns only
after you’ve written all the necessary bytes. Given that the send
buffers are full and the connection is slow, this might take a
while. If your program operates only with a single thread, other
connections have to wait, even if they’re ready to process
write() calls. To work around this problem, you have to associ-
ate a thread with each socket. This way one thread can work
while another one is blocked due to I/O-related tasks.

Threads aren’t as heavyweight as real processes. But,
depending on the underlying platform, they’re not resource
savers either. Each thread uses a certain amount of memory
and, apart from that, many threads imply many thread-con-
text switches, which aren’t cheap.

Java needed a new API to separate the all-too-happy mar-
riage of socket and thread. This finally happened with the new
I/O API (java.nio.*).

In this article I show how you can write a simple Web serv-
er with both the new and the old API. Since HTTP, the Web’s
protocol, is not as trivial as it used to be, I’ll realize only some
simple central features. Therefore, the programs shown here
are neither secure nor protocol-conforming.

Old School Httpd
Let’s look at the old-school HTTP server first (see Listing 1).

(Listings 1–5 can be downloaded from www.sys-con.com/
java/sourcec.cfm.) Since I need only a single class for this real-
ization, it’s quickly explained. In the main() method, a
ServerSocket is instantiated and bound to port 8080. Of
course, you’d usually bind a Web server to port 80, but on Unix
systems you can only do this with superuser rights.
Fortunately, not everyone has them, which is why I chose to
use port 8080.

public static void main() throws IOException {

ServerSocket serverSocket = new ServerSocket(8080);

for (int i=0; i < Integer.parseInt(args[0]); i++) {

new Httpd(serverSocket);

}

}

Then a number of Httpd objects are created and initialized
with the shared ServerSocket. In the Httpd’s constructor, I
make sure all instances have a meaningful name, set a default
protocol, and start the server by executing the start() method
of its superclass Thread. This leads to an asynchronous call to
the run() method, in which an infinite loop is located.

In this infinite loop, the ServerSocket’s blocking accept()
method is called. When a client connects to port 8080 of the
server, the accept() method will return a socket object.
Associated with each socket are an Input- and an
OutputStream. Both are used in the following call to the
handleRequest() method. In this method the client’s request is
read, checked, and an appropriate response is sent back. If it’s
a legitimate request, the requested file is sent back using
sendFile(). If it’s not, the client will receive a corresponding
error message (sendError()). To keep things simple, I won’t
discuss the specifics of the protocol.

while (true) {

...

socket = serverSocket.accept();

...

handleRequest();

...

socket.close();

}

Java COM

48 MAY 2002

ow let’s think about this
realization for a second. Does
it perform well? On the whole,
yes. Certainly I could opti-
mize the request parsing – the
StringTokenizer doesn’t have
a reputation for being ex-
tremely fast. But at least I
turned off the TCP delay
(slow-start algorithm), which
is unsuitable for short con-
nections, and the sending of
the file is buffered. But even
more important, all threads
operate independently of
each other. The native, and

therefore fast, accept() method decides which thread
accepts a new connection. Apart from the
ServerSocket object, the threads don’t share any
resources that might need to be synchronized. This
solution is fast but, unfortunately, not very scalable,
as threads are definitely a limited resource.

Nonblocking Httpd
Let’s look at another solution that uses the new

I/O package. It’s a bit more complicated and

requires the cooperation of different threads. It con-
sists of four classes (see Figure 1):
1. NIOHttpd (see Listing 2)
2. Acceptor (see Listing 3)
3. Connection (see Listing 4)
4. ConnectionSelector (see Listing 5)

NIOHttpd basically launches the server. Just as
in Httpd, a server socket is bound to port 8080. The
important difference is that this time I use a
java.nio.channels.ServerSocketChannel instead of a
ServerSocket. I need to open the channel with a fac-
tory method before binding it explicitly to the port
using the bind() method. Then I instantiate a
ConnectionSelector and an Acceptor. Doing so,
each ConnectionSelector is registered with an
Acceptor. In addition, the Acceptor is provided with
the ServerSocketChannel.

public static void main() throws IOException {

ServerSocketChannel ssc =

ServerSocketChannel.open();

ssc.socket().bind(new

InetSocketAddress(8080));

ConnectionSelector cs = new

ConnectionSelector();

new Acceptor(ssc, cs);

}

Figure 2 depicts the concurrent execution of the
Acceptor and ConnectionSelector threads. To
understand the interaction between the two
threads, let’s first take a closer look at the Acceptor.
Its task is to accept incoming connections and reg-
ister them with the ConnectionSelector. Already in
the constructor, the superclass’s start() method is
called as the required infinite loop is in the run()
method. In this loop a blocking accept() method is
called that will eventually return a socket object –
almost exactly as in Httpd. But this time it’s a
ServerSocketChannel’s accept() method, not a
ServerSocket’s. Finally, with the obtained socket-
Channel as an argument, a connection object is cre-
ated and registered with the Connection-
Selector using its queue() method.

while (true) {

...

socketChannel = serverSocketChannel.accept();

connectionSelector.queue(new

Connection(socketChannel));

...

}

To summarize: the Acceptor can only accept and
register connections with a ConnectionSelector in
an endless loop.

Like Acceptor, the ConnectionSelector is also a
thread. In its constructor a queue is instantiated and
a java.nio.channels.Selector is opened using the fac-
tory method Selector.open(). The Selector is proba-
bly the most important part of the server. It allows
me to register connections and to obtain a list of
those connections that are ready for reading or writ-
ing.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1: Class diagram for NIOHttpd

N

Java COM

49MAY 2002

Java COM

Mongoose
Technology

www.portalstudio.com

Java COM

50 MAY 2002

After the start() method is called in the construc-
tor, the endless loop in run() is executed. In this loop
I call the Selector’s select() method. This method
blocks until either one of the registered connections
is ready for I/O operations or the Selector’s wake-
up() method is called.

while (true) {

...

int i = selector.select();

registerQueuedConnections();

...

// handle connections…

}

It’s crucial to understand that while the
ConnectionSelector thread executes select(), no
Acceptor thread can register connections with the
Selector, because the corresponding methods are
synchronized. Therefore I use a queue, to which the
Acceptor thread adds connections as needed.

public void queue(Connection connection) {

synchronized (queue) {

queue.add(connection);

}

selector.wakeup();

}

Right after queuing a connection, the Acceptor
calls the Selector’s wakeup() method. This causes
the ConnectionSelector thread to resume execution
and return from the blocking select() call. Since the
Selector is not blocked anymore, the Connection-
Selector can now register the connection from the
queue. It happens the following way in register-
QueuedConnections():

if (!queue.isEmpty()) {

synchronized (queue) {

while (!queue.isEmpty()) {

Connection connection =

(Connection)queue.remove(queue.size()-1);

connection.register(selector);

}

}

}

Selector Registration Using Keys
At this point I have to focus on the Connection’s

register() method. Until now I’ve talked about a con-
nection that’s registered with a Selector. This is a bit
simplified. Instead, a java.nio.channels.Socket-
Channel object is registered with a Selector, but only
for specific I/O operations. After registration, a
java.nio.channels.SelectionKey is returned. This key
can be associated with arbitrary objects using its
attach() method. To get a connection with a key, I
attach the Connection object to the key. By doing so
I can indirectly obtain a Connection from the
Selector.

public void register(Selector selector)

throws IOException {

key = socketChannel.register(selector,

SelectionKey.OP_READ);

key.attach(this);

}

Getting back to the ConnectionSelector, the
select() method’s return value indicates how many
connections are ready for I/O operations. If the return
value is zero, I skip the rest and return to the select()
call. Otherwise, I iterate over the selection keys, which
I obtained as Set by calling selectedKeys(). From the
keys I get the previously attached Connection objects
and call their readRequest() or writeResponse() meth-
ods. Which method is actually called depends on
whether the connections were registered for read or
write operations.

This eventually brings me back to the
Connection class. It represents the connection
and handles all the protocol’s specifics. In its
constructor the provided SocketChannel is set to
nonblocking mode. This is essential for the serv-
er. Then a couple of default values are set and
the buffer requestLineBuffer is allocated. As the
allocation of direct buffers is somewhat expen-
sive and I’m using a new buffer for each connec-
tion, I use java.nio.ByteBuffer.allocate() instead
of ByteBuffer.allocateDirect(). If I reuse the
buffer, a direct buffer could prove to be more
efficient.

public Connection(SocketChannel socketChannel)

throws IOException {

this.socketChannel = socketChannel;

...

socketChannel.configureBlocking(false);

requestLineBuffer = ByteBuffer.allocate(512);

...

}FIGURE 2: Sequence diagram for NIOHttpd

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

51MAY 2002

Java COM

Parasoft
Corporation

www.parasoft.com/jdj5

After all initializations are done and the
SocketChannel is ready for reading, the readRe-
quest() method is called by the ConnectionSelector.
Using socketChannel.read(requestLineBuffer), all
available bytes are read into the buffer. If the full line
can’t be read, I return to the calling Con-
nectionSelector and thus allow another connection
to take over. However, if the whole line is read, it’s
time to interpret the request just as I did in Httpd. If
it’s a legitimate request, I create a java
.nio.Channels.FileChannel for the requested file and
call the method prepareForResponse().

private void prepareForResponse() throws

IOException {

StringBuffer responseLine = new

StringBuffer(128);

...

responseLineBuffer = ByteBuffer.wrap(

responseLine.toString().getBytes("ASCII")

);

key.interestOps(SelectionKey.OP_WRITE);

key.selector().wakeup();

}

prepareForResponse() builds the response line
and (if necessary) headers as well as error messages,
and writes this data to responseLineBuffer. This
ByteBuffer is a thin wrapper around a byte array that
was created using the factory method Byte-
Buffer.wrap(byte[]). After generating the data that I
want to write, I need to notify the Con-
nectionSelector that from now on I want to write
data rather than read it. This is achieved by calling
the selection key’s method interestedOps(Sel-
ectionKey.OP_WRITE). To guarantee that the selec-
tor quickly realizes the connection’s change of inter-
est, I call its wakeup() method.

Now the ConnectionSelector calls the connec-
tion’s writeResponse() method. First, the response-
LineBuffer is written to the socket channel. If the
entire content of the buffer can be written, and if I
still have to send the requested file, I call the
transferTo() method of the FileChannel that I
opened before. transferTo() potentially transfers
data very efficiently from a file to a channel. How
efficiently depends on the underlying operating sys-
tem. In any case, only as many bytes are transferred
as can be written to the target channel without
blocking. To be on the safe side and to ensure fair-
ness between connections, I set an upper limit of
64KB.

If all data is transferred, close() does the clean-
up work. Here, the deregistering of the Connection
is important. This is achieved by calling the selec-
tion key’s cancel() method.

public void close() {

...

if (key != null) key.cancel();

...

}

Again I wonder: How does this realization per-
form? And again I can answer: it performs well.

In principle, one Acceptor and one Connection-
Selector are sufficient to keep an arbitrary number
of connections open. Thus this realization shines in
the category of scalability. But as the two threads
have to communicate through the synchronized
queue() method, they might block each other. There
are two ways out of this dilemma:
1. A better realization of the queue
2. Multiple Acceptor/ConnectionSelector pairs

One solution could be realized by using a
LinkedQueue (see Concurrent Programming in Java
by Doug Lea). This data structure is synchronized
with two independent locks – one for the head and
one for the tail. This ensures that adding and remov-
ing threads don’t block each other. Only if the queue
is empty is there a possibility of mutual blocking,
but this can be avoided with an extra check.

In comparison to this elegant approach, my sec-
ond solution qualifies for the “brute force” category.
The load is balanced with multiple Acceptor/
ConnectionSelector pairs and the synchronization
problem isn’t solved, but is somewhat reduced.
Unfortunately, this causes additional costs for con-
text switches. Compared to Httpd, fewer threads are
needed.

One disadvantage to NIOHttpd, in comparison
to Httpd, is that for each request, a new Connection
object with buffers is created. This leads to an addi-
tional CPU cycle burning caused by the garbage col-
lector. How large these extra costs are depends on
the VM. However, Sun doesn’t tire of emphasizing
that with Hotspot, short-lived objects are not a
problem anymore.

Comparative Number Games
How much better does NIOHttpd scale than

Httpd? Let’s play with a couple of numbers, but
before I go into media res, be warned: the formulas
and the numbers I’m going to find are highly specu-
lative. Only the concepts’ performance is estimated.
Important context variables like thread synchro-
nization, context switches, paging, hard disk speed,
and caches are not considered.

First I estimate how long it takes to process r
simultaneous requests for files with size s bytes, if
the client bandwidth is b bytes/second. In the case
of Httpd, this obviously depends directly on the
number of threads t, as only t requests can be
processed at a time. I assume that a corresponding
formula looks like Formula 1. c is the constant cost
for parsing, etc., that has to be paid for every

Java COM

52 MAY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

TABLE 1: d for r –> ∞ with c=10ms and t=100

Java COM

b in bytes/s s in bytes 1/d
8000 1000 0.89 1.13
8000 10000 0.44 2.25
8000 100000 0.07 13.5
8000 1000000 0.01 126
10000000 1000 1.00 1.00
10000000 10000 1.00 1.0
10000000 100000 0.99 1.01
10000000 1000000 0.91 1.1

d for–> ∞

53MAY 2002

Java COM

Interland
www.interland.com

Java COM

54 MAY 2002

request. In addition, I assume I can read data faster
from the disk than I can write it to the socket, my
bandwidth is greater than the sum of the clients’
bandwidth, and the CPU is not fully utilized.
Therefore the server-side bandwidth, caches, and
hard disk speed are not part of the equation.

However, NIOHttpd is not dependent on t. The
transfer time l depends mostly on the client band-
width b, the size of the file s, and the previously
mentioned constant costs c. This leads to Formula 2,
which estimates the minimum transfer time for
NIOHttpd.

The quotient d (see Formula 3) is of interest
since it measures the relationship of the perfor-
mances of NIOHttpd and Httpd.

After closer examination (…and some rows of
data), it becomes apparent that if s, b, t, and c are
constant, d grows toward a limit. This limit can be
easily calculated using Formula 4, which measures
the limit of d for r –> ∞.

Thus, besides the number of threads and con-
stant costs, the connection’s length s/b has tremen-
dous influence on d. The longer the connection
exists, the smaller d is, and the advantage of
NIOHttpd compared to Httpd is greater. Table 1
and Figure 3 show that NIOHttpd can be 126 times
faster than Httpd, given that c=10ms, t=100, s=1MB,
and b=8KB/s. NIOHttpd has a big advantage if the
connection stays open for a long time. If the con-
nection is short, e.g., in a local 100Mb network, the
advantage is only 10% provided the files are large. If
the files are small, the difference won’t be
detectable.

In these calculations it’s assumed that the con-
stant costs of NIOHttpd and Httpd are about the
same and no new costs are introduced by the differ-
ent ways the servers have been implemented. As
mentioned before, this comparison only holds
under ideal conditions.

This is sufficient, however, to give you the
idea that either concept might be beneficial. It
should be noted that most Web files are small,
but HTTP-1.1-clients try to keep the connection
open as long as possible (with a keep-alive or
persistent connection). Often, connections that
will never again transfer any data are kept open.
In a server with one thread per connection this
leads to an incredible waste of resources. So,
especially for HTTP servers, the scalability can
be increased dramatically by using the new I/O
API.

Conclusion
With the new I/O API you can build highly scala-

ble servers. In comparison to the old API, it’s a bit
more complex and requires a better understanding
of multithreading and synchronization. Also, the
documentation needs improvement. But if you’ve
gotten over these hurdles, the new API proves to be
a useful and necessary improvement of the Java 2
platform.

References
• HTTP 1.1: www.w3.org/Protocols/rfc2616/rfc

2616.html
• Lea, D. (1999). Concurrent Programming in Java:

Design Principles and Patterns. Second Edition.
Addison-Wesley. http://gee.cs.oswego.edu/dl/
cpj

AUTHOR BIO
Hendrik Schreiber works as senior consultant for innoQ Deutschland GmbH
(www.innoq.com) in Ratingen, Germany. His main area of interest is the
architecture of modern Java-based solutions using J2EE. He is a coauthor of
Java Server and Servlets: Building Portable Web Applications, published by
Addison-Wesley.

J2
SE

H
om

e
J2

E
E

J2
M

E

hendrik.schreiber@innoq.com

FORMULA 4

FORMULA 3

FORMULA 2

FORMULA 1

FIGURE 3: d for r –> ∞ with c=10ms and t=100

Java COM

55MAY 2002

Java COM

Actuate
Corporation

www.actuate.com/info/jbjad.asp

Java COM

56 MAY 2002

JDBC 3.0 – Something for Everyone

J D B C 3 . 0

This article describes, in detail, the
new features that are available in JDBC
3.0 and explains why they are important.

The JDBC 3.0 specification was
shipped as part of the J2SE 1.4 release
early in 2002. The key goals of the JDBC
Expert Panel were to align with the most
important features of SQL99, combine
all the previous JDBC specifications into
a single document, provide a standard
way to take advantage of native DBMS
functionality, and improve scalability.
The JDBC 3.0 specification contains a
collection of useful new features, none
of which, if taken individually, would be
considered “major.”

Transactional Savepoints
One of the more useful new features

of JDBC 3.0 is transactional savepoints.
Traditionally, database transactions
have been “all or nothing” types of
events. An application would start a
transaction, insert some rows, do some
updates, and either make the changes
permanent (commit) or discard them all
(roll back) – all the changes would be
made permanent or none of them
would be.

With JDBC 3.0, the transactional
model is more flexible. An application
might start a transaction, insert several
rows, and then create a savepoint, which
serves as a bookmark. Then, the applica-
tion might continue by performing
some if/then/else type of logic, such as
updating a group of rows. With JDBC 2.0,
the application at this point would have
been forced to either commit or roll
back all the changes. In contrast, a JDBC
3.0 application might contain logic that
determines that the updates were a bad
idea, but the initial inserts were okay. In
this case, the application can roll back to
the savepoint (the bookmark) and com-

mit the group of inserts as if the updates
had never been attempted (see the
Listing 1).

Pooling Enhancements
Connection pooling existed in the

JDBC 2.0 specification, but JDBC 3.0
provides a much finer granularity of
control over the connection objects in
the pool. The single most expensive
operation in a database application is
establishing a connection. With some
databases, establishing a database con-
nection can take up to nine network
round-trips between the JDBC driver
and the database.

Connection pooling essentially
involves keeping a cache of database
connection objects open and making
them available for immediate use by any
application that requests a connection.
Instead of performing expensive net-
work round-trips to the database server,
a connection attempt results in the reas-
signment of a connection from the local
cache to the application. When the
application disconnects, the physical tie
to the database server isn’t severed;
instead the connection is placed back
into the cache for immediate reuse.

With JDBC 2.0 connection pooling,
there were no tuning options. You either
used connection pooling or you didn’t.
With JDBC 3.0, there’s a finer level of
granularity available to control the char-
acteristics of the connection pool. For
example, you can fine-tune the follow-
ing options to allow for maximum per-
formance and scalability:
• The minimum number of connec-

tions to keep in the pool
• The maximum number of connec-

tions to have in the pool
• The initial pool size
• How long connections can remain

idle before they’re discarded from the
pool

• How often the connection pool
should be evaluated to see if it meets
the configuration criteria

In addition to connection pooling
tuning options, JDBC 3.0 also specifies
semantics for providing a statement
pool. Similar to connection pooling, a
statement pool caches Prepared-
Statement objects so they can be reused
from the cache without application
intervention. For example, an applica-
tion might create a PreparedStatement
object similar to the following SQL state-
ment:

select name, address, dept, salary

from personnel where empid = ? or

name like ? or address = ?

When the PreparedStatement object
is created, the SQL query is validated for
syntax and a query optimization plan is
produced. The process of creating a
PreparedStatement is extremely expen-
sive in terms of performance, especially
with some database systems such as
DB2. Once the PreparedStatement is
closed, a JDBC 3.0–compliant driver
places the PreparedStatement in a local
cache instead of discarding it. If the
application subsequently attempts to
create a PreparedStatement with the
same SQL query, the driver can retrieve
the associated statement from the local
cache instead of performing a network
round-trip to the server and expensive
database validation.

One advantage of connection pool-
ing tuning properties and statement
pooling is that their benefits can be real-
ized in existing applications without any
code changes. Upgrading an environ-

WRITTEN BY
JOHN GOODSON

There was no ticker tape parade to accompany the release of
the JDBC 3.0 specification, but many will be pleasantly surprised at
its list of enhancements that include everything from perfor-
mance-tuning options to support for extended-level database fea-
tures.

Important new features

J2
SE

H
om

e
J2

E
E

J2
M

E

57MAY 2002

Java COM

InstallShield
Software Corp.

www.installshield.com

58 MAY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

J D B C 3 . 0

ment to include a JDBC 3.0–compliant
application server or driver can improve
the performance and scalability of
deployed systems, because the JDBC
pooling enhancements are not directly
invoked by the application’s compo-
nents. Instead, the pooling features are
transparently used by the JDBC infra-
structure.

Retrieval of Autogenerated Keys
Many databases have hidden

columns (called pseudo-columns) that
represent a unique key over every row in
a table. For example, Oracle and
Informix have ROWID pseudo-columns
and Microsoft SQL Server provides iden-
tity columns. Using these types of
columns in a query typically provides
the fastest way to access a row, because
the pseudo-columns usually represent
the physical disk address of the data.
Before JDBC 3.0, an application could
only retrieve the value of the pseudo-
columns by executing a Select statement
immediately after inserting the data. For
example:

Int rowcount = stmt.executeUpdate (

"insert into LocalGeniusList (name)

values (‘Karen’)"); // insert row

// now get the disk address – rowid –

for the newly inserted row

ResultSet rs = stmt.executeQuery (

"select rowid from LocalGeniusList

where name = ‘Karen’");

This method of retrieving pseudo-
columns has two major flaws. The first is
that retrieving the pseudo-column
requires a separate query to be sent over
the network and executed on the server.
The second is, because there might not
be a primary key over the table, the
search condition of the query may not
be able to uniquely identify the row. In
this case, multiple pseudo-column val-
ues could be returned and the applica-
tion may not be able to figure out which
one was actually the value for the most
recently inserted row.

An optional feature of the JDBC 3.0
specification is the ability to retrieve
autogenerated key information for a row
when the row is inserted into a table.
This new functionality removes the
drawbacks in existing implementations
that we discussed, because a separate
query is not required to retrieve the key
and the application is not responsible
for the logic to retrieve the key. For
example:

Int rowcount = stmt.executeUpdate (

"insert into LocalGeniusList (name)

values (‘Karen’),

Statement.RETURN_GENERATED_KEYS);

// insert row AND return key

ResultSet rs = stmt.getGeneratedKeys

(); // key is automatically

available

The application contains a value that
can be used in a search condition to pro-
vide the fastest access to the row and a
value that uniquely identifies the row,
even when no primary key exists on the
table.

Some databases, like DB2, do not
provide an autogenerated key such as a
pseudo-column. Fortunately, the JDBC
3.0 specification also allows the appli-
cation to ask for the columns it knows
represent a key on the table. For exam-
ple:

// insert the row and specify that

the employee ID be returned as the

key

Int rowcount = stmt.executeUpdate (

"insert into LocalGeniusList (name)

values (‘Karen’),

"employeeID");

ResultSet rs = stmt.getGeneratedKeys

(); // Karen’s employeeID value

is now available

The ability to retrieve autogenerated
keys provides flexibility to the JDBC
developer and a way to realize perform-
ance boosts when accessing data.

Updating BLOB and CLOB Data Types
The SQL99 specification introduced

two new advanced built-in data types,
BLOB and CLOB, that provide flexible
and fast access to long binary and char-
acter data items, respectively. While
JDBC 2.0 provided mechanisms to read
BLOB and CLOB data, it lacked a stan-
dard update method for those types,
resulting in several problems for JDBC
application developers.

The first problem is that some JDBC
driver vendors introduced proprietary
update mechanisms for BLOB and
CLOB data types. Using proprietary
methods inside an API standard makes
those applications nonstandard by defi-
nition. The second problem is that many
JDBC application developers assumed
that they could use existing JDBC meth-
ods, such as setString, to update the val-
ues. Again, this resulted in different
behavior on a driver-by-driver case, ulti-
mately making those applications non-
standard.

JDBC 3.0 introduces a standard
mechanism for updating BLOB and
CLOB data. Note that the BLOB and
CLOB interfaces apply only to database
systems, such as Oracle, DB2, and
Informix, that support the new SQL99
BLOB and CLOB data types. Microsoft
SQL Server and Sybase support long
varbinary and long varchar data types
(image and text) that are similar to the
new SQL99 types, but they don’t support
BLOB and CLOB types. Many JDBC
application developers mistakenly think
that the BLOB and CLOB interfaces
should be used for all types of long data;
however, they should be used only with
BLOB and CLOB data. The JDBC specifi-
cation provides methods such as
setString to deal with long varchar and
long varbinary data. Listing 2 shows how
to update the contents of a CLOB col-
umn.

Multiple Open Result Set Objects
Data architects routinely build their

business integrity rules into database
system stored procedures. For example,
instead of trying to remember all the
tables that must be updated when a
new employee is hired, developers
commonly use a central stored proce-
dure, perhaps one named AddNew-
Employee, that can be called when a
new employee is hired. Calling stored
procedures can result in table updates
and, also, queries being executed that
return result sets.

Invoking a single stored procedure
can result in multiple result sets being
returned to the calling application. For
example, a stored procedure named

One of the more useful
new features of JDBC 3.0
is transactional savepoints

“
”

59MAY 2002

Java COM

LOOX
Software Inc

www.loox.com

60 MAY 2002

J D B C 3 . 0

employeeInfo might return the follow-
ing result sets with:
• The employee’s address and personal

information
• A list of the employee’s staff if he or

she is a supervisor
• A list of the projects on which the

employee is working

With JDBC 2.0, an application call-
ing the employeeInfo stored procedure
would have to serially process the
three independent result sets that were
generated at execution. If the applica-
tion needed to first report on the proj-
ects list – the third of the sequenced
result sets – then it would have to
retrieve and discard the first two result
sets. This processing methodology is
somewhat inflexible and involves pro-
gramming overhead and complexity. It
also doesn’t allow simultaneous access
to any of the result sets generated from
calling a procedure. That restriction
limits the flexibility of a JDBC develop-
er.

JDBC 3.0 gives developers the flexi-
bility to decide if they want concurrent
access to result sets generated from pro-
cedures or if they want the resources to
be closed when a new result set is
retrieved (JDBC 2.0 compliant behav-
ior). Listing 3 is an example that simul-
taneously processes results from the
employeeInfo procedure.

Miscellaneous Features
We’ve detailed several new JDBC 3.0

features that range from performance
enhancements to development flexibili-
ty. There are other JDBC 3.0 enhance-
ments, including the ability to retrieve
parameter metadata (allows develop-
ment flexibility), allowing stored proce-
dure parameters to be called by name
(simplifies programming), the ability to
specify holdable cursors (improves per-
formance), and more SQL99 advanced
data-type alignment.

There’s something in JDBC 3.0 that
will make every JDBC developer happi-
er and it’s available now. Remember,
JDBC has both required and optional
features, and I’ve described some of
each in this article. Before assuming
that a feature is supported in your
favorite JDBC 3.0–compliant driver,
check the database metadata to make
sure optional features are supported.
JDBC 3.0 is an approved specification –
it’s time to utilize the new features.
Good luck!

AUTHOR BIO
John Goodson is the

vice president of
research and

development for
DataDirect

Technologies. For
nearly 10 years, John

has worked closely
with Sun and

Microsoft on the
development of

database access
standards, and is an

active member of the
Expert Panel for the

JDBC specification
evolution. John earned

his BS in computer
science from
Virginia Tech. john.goodson@datadirect-technologies.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Statement stmt = conn.createStatement ();

Int rowcount = stmt.executeUpdate ("insert into etable (event) values

(‘TMM’)");

Int rowcount = stmt.executeUpdate ("insert into costs (cost) values

(45.0)");

Savepoint sv1 = conn.setSavePoint ("svpoint1");

// create savepoint for inserts

Int rowcount = stmt.executeUpdate ("delete from employees");

Conn.rollback (sv1);

// discard the delete statement but keep the inserts

Conn.commit;

// inserts are now permanent

// Retrieve the case history for incident 71164

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery (

"select CaseHistory from Cases where IncidentID=71164");

rs.next(); // position to the row

Blob data = rs.getClob (1);

// populate our Blob object with the data

Rs.close();

// now let’s insert this history into another table

stmt.setClob (1, data);

// data is Clob object we retrieved from the history table

int InsertCount = stmt.executeUpdate (

"insert into EscalatedIncidents (IncidentID, CaseHistory, Owner)"

+ " Values (71164, ?, ‘Goodson’) ");

// we’re done … CLOB data is now in the database

// get ready to call the employeeInfo procedure

CallableStatement cstmt = conn.prepareCall ("{call employeeInfo (?)}");

Cstmt.setInt (1,71164);

// bind parameter info for employee with id 71164

Boolean RetCode = Cstmt.execute ();

// call the procedure

// For simplicity we’ll bypass logic for the procedure possibly returning

update counts

// first result set will be discarded … materialize it and immediately

move to the second

ResultSet DiscardRS = cstmt.getResultSet();

// materialize first result set

ResultSet EmpListRS = cstmt.getMoreResults ();

// by default, close DiscardRS

// the 2nd result set: list of employees that report to 71164 is now

available

ResultSet ProjectsRS = cstmt.getMoreResults (KEEP_CURRENT_RESULT);

// the 3rd result set is now materialized and we can simultaneously oper-

ate on both

// the employee list and the project list

Listing 3

Listing 2

Listing 1

Java COM

61MAY 2002

Java COM

Quintessence
Systems Limited

www.in2j.com

62 MAY 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

Reflections
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E J

bases

Legacy
Systems

Corpo

Sync En
Middlew

Mobile Appl

J 2 M E I N D E X

JavaOne is over, and it’s time to sit back
and reflect…and to sift through the
hundreds of press releases and

announcements that ricochet around the
Internet like balls around a pinball
machine. While I couldn’t be there myself,
when I checked my e-mails each day, I felt
as if I was there in spirit at least.

For me, the most significant news to
come out of JavaOne was talk of Monty –
Sun’s next-generation virtual machine for
mobile devices. Monty is touted as being
up to 10 times as fast as the current KVM,
so it has great potential for multimedia
applications and the like when it finally
appears on a shipping device.

Among a number of announcements
from Motorola: they unveiled the i95cl, a
clam-shaped, Java-enabled mobile phone
with a 120x160 pixel, 256-color screen; and
their Semiconductor Products Sector (SPS)
announced support for Bluetooth and for
ARM’s Jazelle acceleration technology in
their Embedded Reference Implementation
for J2ME.

Metrowerks and AGEA announced the
CodeWarrior Wireless Enterprise Studio –
in their words, “the first wireless applica-
tion development solution”; while Kada
Systems and Metrowerks (again) partnered
with an integration plan for their respec-
tive technologies.

Kada Systems also wins my award for the
largest text-based press release to arrive in
my inbox: 127K…well, mime-encoded
HTML probably accounted for most it, but
they still win the award. Kada introduced
frameworks to optimize deployment of J2ME
apps, announced that they had completed
the certification process for both CLDC and
MIDP, talked about yet another partnership –
this time with Softwired (iBus/Mobile JMS) –
and were demonstrating the combined tech-
nology at JavaOne. Kada also entered into a
strategic alliance with Espial, which I believe
means that Espial’s browser and applications
will be running on Kada’s platform.

Unfortunately, I’ve been unable to find a
“Market Speak”-to-English translator at
Babelfish, so my apologies if I’ve translated
incorrectly.

From Wedgetail Communications came
news of a licensing deal with Sony for
Wedgetail’s JCSI Micro Edition SSL security
software (designed for J2ME) to be implement-
ed in Sony’s new interactive digital TVs.
Wedgetail is a Brisbane-based company, which
is a bit of problem for me, since I was formulat-
ing a theory that most software development is
done by people in northern European coun-
tries where they have winter for most of the
year, and so have nothing better to do with their
time. I’m waiting for confirmation from Wedge-
tail that they’ve outsourced most of their pro-
gramming effort to a development studio in
Antarctica. I mean, they’re Australians!
Shouldn’t they be standing in front of the bar-
becue with a couple of bottles of Victoria Bitter
or something?

• • •
One of the joys of returning to the coun-

try of your birth after a long hiatus is the job
hunt. Never really an enjoyable experience,
as expected, after the dot bomb it’s worse
than ever. I’m not talking about cooling my
heels in office receptions while waiting to be
interviewed, nor am I whinging about the
fact that it’s difficult (but not impossible) to
find an agent who actually knows what J2EE
means (and in this country, nigh impossible
to find one who has heard of J2ME).

No, I’m talking about car parking. I don’t
begrudge someone wanting to make a
respectable profit, but here in Auckland one
particular car park conglomerate charges such
high fees you need to take out a small mort-
gage to park your car in their buildings. So it’s
necessary to hunt out those precious council
car parks – where a few dollars rents the space.

Which brings me to my killer app for the
stressed car park hunter. A peer-to-peer (per-
haps) application linking all car park meters
in the city (Java-enabled parking meters, of
course) with a GPS/MIDP application on my

AUTHOR BIO
Jason R. Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years, “unofficially for five.”

Java COM

74

84

62

64

66

mobile phone that can tell me exactly where the
nearest empty space is. Rather than carrying an
annoying pocketful of coins, the mobile phone
can credit the meter with the parking fee, and
the meter can message the phone when the
time limit is due to expire.

This would be expensive to implement,
but just imagine the convenience. No longer
would I drive for 15 minutes just to find a
cheaper space. I’d go directly to the nearest
available space (I could even be messaged
when a space is about to become available).
Better yet, the meters would not need to be
emptied every few days (a savings in labor
costs), and there are a number of ways car
park “overstayers” can be handled that result
in major cost savings – so the system could
eventually pay for itself.

Better yet, those high-priced car park
companies might have to rethink their
prices…

Reflections
JavaOne is now well and truly over,

and it’s time to sit back and reflect…
by Jason R. Briggs

Edge to Edge
The JXTA for J2ME imple-

mentation interoperates with other
JXTA implementations and provides
a simple API to help J2ME develop-
ers quickly write JXTA applications

and services for small devices.
by Kuldip Singh Pabla

Jini Surrogate as a
Platform for J2ME Games

This article continues the
surrogate architecture tour from
Part 1 (JDJ, Vol. 7, issue 3) and

introduces a method through
which a J2ME device can use it.

By William Swaney

OSGi: The Last Mile of
Software Deployment

Meet the OSGi Service
Platform, Release 2 specification.

by Peter Kriens

Keep Mobile Data and
Applications in Sync with Java

Java provides the foundation
for always-available
mobile applications.

by Jeff Capone

63MAY 2002

Java COM

QUALCOMM
Incorporated
http://brew.qualcomm.com/ZJD4

Java COM

64 MAY 2002

I N D U S T R Y C O M M E N T A R Y
H

om
e

J2
E

E
J2

SE
J2

M
E

Edge to Edge
Already, important technologies like the

small-footprint J2ME are in place to help
developers create applications for small
devices. With J2ME, developers can exploit
the established capabilities of Java to write
applications that are secure, interoperate
with existing solutions, and easily port to
new devices, all without sacrificing the flex-
ibility that Java gives us.

Almost in parallel, interest is also grow-
ing in using peer-to-peer (P2P) technolo-
gies for wireless. Made popular by services
like Gnutella and Napster, P2P computing
rejects the notion of centralized servers in
favor of peer groups – users bound by a
common interest in processing, sharing,
and storing information. With P2P, we can
create networks of systems with very high
levels of redundancy, privacy, and perfor-
mance. Until recently, however, the growth
in P2P was threatened because there was

no standard platform upon which applica-
tions could be crafted.

Project JXTA, incubated at Sun
Microsystems and then quickly placed into
the community development process, has
established an early lead in developing the
infrastructure needed to streamline the
development of P2P applications. Unlike
other approaches, JXTA provides the build-
ing blocks for creating P2P services and
applications. In addition, JXTA offers strong
security and interoperability between appli-
cations through well-defined protocols.

How can JXTA technology be extended
into the wireless space? Most wireless
devices have severe limitations on available
memory, processor performance, and
power. Pagers and cell phones can’t be
expected to support a full-blown JXTA envi-
ronment, at least not anytime soon.

Fortunately, we have experience dealing
with these limitations. The
Java developer community
tackled this issue some time
ago and came up with the
Connected Limited Device
Configuration (CLDC) and
Mobile Information Device
Profiles (MIDP), core class
libraries and specialized
APIs designed to work in the
constrained environments
of wireless devices. Despite
their small size, CLDC and
MIDP offer developers the
tools they need to create
powerful wireless applica-
tions that can interoperate
with the most sophisticated
Java solutions running on
workstations, servers, and
mainframes.

The JXTA developer
community has taken a sim-
ilar approach by defining a
set of functions designed to
work in concert with MIDP.
We call it the JXTA for J2ME

implementation. Once fully deployed, it will
allow a MIDP device to participate in P2P
activities with JXTA peers running on larger
platforms. The community’s goals are
straightforward: (1) wireless P2P applications
should be easy to use and easy to develop, (2)
they should be small enough to be used with
cell phones and PDAs, and (3) they should be
interoperable with JXTA applications run-
ning on larger systems. A tall order, given the
constraints of wireless systems.

The solution is simple. Rather than
hosting a complete JXTA environment on a
small wireless device, some of the work will
be done elsewhere. JXTA programmers are
already familiar with the notion of a JXTA
relay, a peer designated to act on behalf of
others. JXTA relays help route information
across networks and through firewalls.
We’ve extended this idea to create a JXTA
peer service that can act on behalf of a
wireless JXTA peer, store and forward mes-
sages when polled, and translate and con-
dense JXTA XML advertisements (the lin-
gua franca of JXTA) into a more compact
form easily processed by wireless peers.

This approach is straightforward, yet it’s
a no-compromise way to allow J2ME devel-
opers to extend P2P into the realm of wire-
less. A prototype application was demon-
strated at JavaOne Japan in November
2001, and work continues on a full imple-
mentation. For details on its status, visit
http://jxme.jxta.org.

The JXTA for J2ME implementation
interoperates with other JXTA implementa-
tions and provides a simple API to help J2ME
developers quickly write JXTA applications
and services for small devices. I see opportu-
nities to create some exciting applications in
areas like gaming, financial services, and
instant messaging using this technology.

Check out the Project JXTA Web site at
www.jxta.org to learn more about peer-to-
peer computing, experiment with some
sample applications, download the docs
and code, and start riding the next big wave
of applications development. Join us!

Northwoods
Software

Corporation
www.nwoods.com/go/

kuldipsingh.pabla@sun.com
AUTHOR BIO

Kuldip Singh Pabla is the software engineering manager with the Project JXTA team at Sun, managing various
proects including the JXTA for J2ME implementation. Before JXTA, he was the engineering manager for Java

Embedded Server, J2ME division at Sun.

With the next generation of wireless devices entering the market,
the opportunities for Java developers are great.Analysts are predicting that the
demand for wireless applications is set to explode, with over 170 million U.S.
users subscribing to wireless services by 2005. Other countries are moving even
faster. Fortunately, recent developments have left us well prepared to meet the
inevitable demand for applications that this growth will create.

WRITTEN BY KULDIP SINGH PABLA

65MAY 2002

Java COM

Sprint PCS
http://developer.sprintpcs.com

Java COM

66 MAY 2002

Jini Surrogate as a Platform for J2ME Games

J I N I & J 2 M E

This article continues the surrogate
architecture tour and introduces a
method through which a J2ME device
can use it.

To briefly recap, the architecture
allows any device, in our case a J2ME
one, to connect to a Jini network
through a surrogate object that repre-
sents the device in the network. The sur-
rogate host provides a mechanism for
the devices to register themselves and
obtain a context that enables access to
the underlying Jini infrastructure.

Another important reason for choos-
ing the surrogate architecture is that it
allows us to view the device as a single
object from the network perspective.
There’s no single monolithic portal API
or application running; instead, many
different surrogate objects with unique
capabilities and representing many
potentially different devices are dis-
played in the Jini network.

How Should We Connect?
The surrogate architecture defines

the term connector as a means by which
a device will discover and register with a
surrogate host. Possible connectors
might include such protocols as Blue-
tooth, USB, or even traditional network
ones. Madison comes with an IP inter-
connect, useful in many cases but it may
not be the best one for our project. For
several reasons I believe HTTP is the
best protocol to use.

HTTP? It does have its disadvan-
tages. Foremost of these – it’s a re-

quest/response protocol. This means
that either we settle for a one-way com-
munication model where all communi-
cation with the device must come as a
response to an initial request, or we
have an HTTP server at both the device
and the surrogate object. The second
option is just not possible in J2ME, so
we’re stuck with the first.

The second disadvantage is that
HTTP has no notion of “discovery,” at
least in the Jini sense. This means that
our device must have knowledge, in the
form of a URL, of where the surrogate
host is beforehand. It would be nice to
somehow find a surrogate host but we
can hardly multicast the Internet look-
ing for one.

The J2ME specification only requires
support for HTTP connections, though
implementations of J2ME may support
other types of communication. By
choosing HTTP we guarantee that any
J2ME device will be able to work with
our surrogate host connector. There
have been many debates as to whether
J2ME is powerful enough, as well as
fears that using it results in the loss of
powerful native functionality. Cross-
platform code has its own set of disad-
vantages, but in our case the portability
is worth the loss in functionality.

To see another advantage, let’s think
about our use case. Our goal is to create
a games platform on mobile devices.
Typically, this means many users con-
necting with our system simultaneously.
It’s not unrealistic to think of multiplay-

er games with thousands of players con-
currently connected. In this case, HTTP
scales quite well – after all, it’s a proven
technology already handling huge num-
bers of simultaneous requests. Thus our
system should be able to handle more
users making requests every few min-
utes or so rather than a group of users
who are constantly connected over
sockets. It may even be cheaper for the
end user by minimizing the amount of
airtime consumed.

Finally, even though I’m advocating
HTTP as the protocol to communicate
with the surrogate host, it doesn’t have
to be the protocol used to communicate
with the surrogate object once it’s
instantiated. I’ll continue to use HTTP
in our project, but the surrogate archi-
tecture doesn’t require this and other
protocols could be used depending on
the device’s J2ME implementation.

Defining Our Protocol
In defining a surrogate HTTP proto-

col I’ll rely heavily on what has already
been defined for the IP connector. That
specification is already in the review
stage of the Jini Decision Process (see
www.jini.org/standards/), and since
HTTP is built on IP, there are some simi-
larities. In addition, doing so is what I
consider being a “good Jini citizen”:
cooperating and contributing to a com-
munity that gives a tremendous amount
to its members. By building on the IP
connector work, we respect the stan-
dards already defined, ensuring that Jini

WRITTEN BY
WILLIAM SWANEY

In Part 1 of this article (JDJ,Vol. 7, issue 3) I introduced the idea
of using the surrogate architecture within Jini as a platform for
J2ME games. I also showed how to start Madison, Sun’s reference
implementation, and how to connect to it with the provided device
simulator.

Using HTTP as a communications protocol

H
om

e
J2

E
E

J2
SE

J2
M

E

Part 2

67MAY 2002

Java COM

Sitraka
www.sitraka.com/jprobe/jdj

Java COM

68 MAY 2002

J I N I & J 2 M E

services in general will be able to com-
municate with each other and interop-
erate without difficulty.

As stated earlier we won’t need the
discovery protocols. We will, however,
need a registration protocol that allows
a device to register with the surrogate
host. Examining the IP interconnect reg-
istration request protocol we can see
that it will suit our needs as well for
HTTP. The registration request protocol
is sent by the device to the surrogate
host and has the following format:
• int protocol version
• short length of surrogate code URL
• byte[] surrogate code URL
• int length of initialization data
• byte[] initialization data
• int length of surrogate code
• byte[] surrogate code

We’ll also need a response to this,
which is something that the IP intercon-
nect doesn’t define. The main reason for
defining a response is that if we use
HTTP to continue communicating with
the surrogate object, we must somehow
let the device know how to accomplish
this. Why? Once the surrogate object is
instantiated, we’re no longer communi-
cating with the surrogate host. Instead,
we’re now communicating directly with
the surrogate object. If HTTP is the only
available protocol, then the device must
initiate all communication. We define a
response protocol in order to pass the
URL for the surrogate object to the
device, a different URL than for the sur-
rogate host. Our response protocol is
defined as follows:
• int protocol version
• short length of surrogate connect

URL
• byte[] surrogate connect URL

Finally, since I intend to continue to
use HTTP as the transport for device-to-
surrogate object communication, it
makes sense to define some sort of mes-
sage protocol. Even though the type of
messages sent may be very different
depending on the type of game being
played, I’ll define a basic message proto-

col. An example of basic communica-
tion is passing a message that includes
some data as a payload. Of course, the
device and surrogate object must both
be aware of the message format, though
the surrogate host need not be. The
message protocol might have the follow-
ing format:
• int protocol version
• int message type
• int length of payload data
• byte[] payload data

Finally Some Client Code…
Wait a minute, isn’t this supposed to

have something to do with J2ME? Well,
there are still some missing pieces on
the Jini side, but let’s take a little break
first and make use of the protocols
introduced earlier.

Every game written using the HTTP
interconnect will need to register with
the surrogate host and receive a
response. Therefore, it makes sense to
encapsulate these two protocols in
objects. Since our registration protocol
is the same as the one for the IP inter-
connect, we may be able to reuse some
of our code should we use J2ME over IP
in the future.

The limited resources of a typical
J2ME device now force us to make some
design decisions. It’s tempting to define
an interface for our two protocols,
something like the following:

public interface InterconnectProtocol

{

void read(java.io.InputStream in)

throws java.io.IOException;

void write(java.io.OutputStream out)

throws java.io.IOException;

}

This allows us a nice layer of abstrac-
tion, and by encapsulating the protocol
in an object that accepts streams for
reading and writing, we can use any type
of connection.

What about those limited resources?
By creating an interface we have one
more file to add to our J2ME JAR. With
some phones having an application

limit of 50K, why add unnecessary
bloat? It’s a case of evaluating each situ-
ation. For now I’ll keep the interface, as
it allows flexibility in adding more pro-
tocols for different message formats. Be
aware though that sometimes every lit-
tle byte counts; I’ve worked on applica-
tions in which I removed all evidence of
object-oriented design in order to bring
the size of the code down.

A further reduction in code size can
be obtained, in our case by combining
the registration and response protocols
into one object. The reason is simply
that the J2ME device need only send
registrations to the surrogate host; it
doesn’t need to read the registration
protocol. Similarly it only has to read
the responses and never needs to send
them. Again this is a decision to make
based on the situation. By combining
the protocols here we lose the reusabili-
ty of the registration protocol with an IP
interconnect, as the response is only
needed with the HTTP interconnect.

See Listings 1 and 2 for J2ME encap-
sulations of the registration and
response protocols, respectively.

What Should an HTTP Surrogate Look Like?
Let’s turn back to the Jini side of our

project and think about what still needs
to be defined, what an HTTP surrogate
will look like, and how the surrogate
host combined with the HTTP intercon-
nect will interact with these surrogate
objects.

In this section I’m assuming we’ll
continue to communicate with the sur-
rogate object using HTTP. This means
that either the surrogate must have an
embedded HTTP server in its code, or
the HTTP interconnect must provide
that service for the surrogate object. The
second case is not unreasonable as it
simplifies the creation of surrogate
objects, which is an important goal in a
development platform. It also philo-
sophically fits with the surrogate archi-
tecture: the host provides a context for
the surrogate object and so does the
interconnect.

This leads to the question of how a
message is delivered from the intercon-
nect-provided HTTP server to the surro-
gate. The embedded HTTP server pro-
vided by the interconnect and the surro-
gate object should have an exclusive
relationship. At the very least, there
should be some separation, and
depending on the embedded server this
might be an exclusive handler for HTTP
requests destined for a specific surro-
gate object. To pass the message to the
surrogate object we need to create an
interface that it should implement:

H
om

e
J2

E
E

J2
SE

J2
M

E

The J2ME specification only requires

support for HTTP connections, though

implementations of J2ME may support

other types of communication

“
”

69MAY 2002

Java COM

Motorola
www.motorola.com/developers/wireless

Java COM

70 MAY 2002

J I N I & J 2 M E

public interface HttpSurrogate

extends net.jini.surrogate.Surrogate

{

void handle(java.io.InputStream in,

java.io.OutputStream out) throws

java.io.IOException;

}

Are there potential problems in
defining an interface our surrogates
must implement? Other HTTP intercon-
nect implementations may have differ-
ent designs and we run into a case of
surrogate objects being incompatible
across different surrogate hosts.
However, as we are going to further
define the relationship between the
HTTP surrogate object and the HTTP
interconnect, this seems a small issue.

The HttpSurrogate interface
extends the basic surrogate interface as
defined in the surrogate architecture
specification (included in the Madison
download). This interface is defined as
follows and allows the surrogate host to
provide basic life-cycle services to the
surrogate:

package net.jini.surrogate;

public interface Surrogate {

void activate(HostContext

hostContext, Object context) throws

Exception;

void deactivate();

}

The first object in the activate()
method is the HostContext, provided by
the surrogate host. The second object is
the context, provided by the intercon-
nect, and it’s passed as an object; since
the surrogate host calls this method on
the surrogate, it doesn’t need to know
the nature of the context.

We’ll need to define a context for the
HTTP interconnect. The context defined
in the IP interconnect fits our needs and
keeps some consistency between the
interconnects. The interface for the con-
text is:

public interface

HttpInterconnectContext extends

net.jini.surrogate.KeepAliveManagement

{

byte[] getInitializationData();

java.net.InetAddress getAddress();

}

This provides a way to retrieve both
the initialization data we may include in
the registration protocol and the
InetAddress of the device. We may want
the InetAddress in the future, as it will
allow the surrogate to create connec-
tions back to the device should the J2ME

implementation on that device support
them.

You’ll notice that the interface
extends another surrogate specification
interface. This allows the interconnect
to assist in defining and enforcing what
it means to have a live connection
between a device and a surrogate.

Tell Me What You Think
So far we’ve covered a lot of ground

and further detailed some of the ideas
introduced in Part 1. We’re still not there,
but we’re getting closer to achieving the
goal of developing a game platform for
J2ME devices in a Jini network.

I’m interested in hearing your opin-
ions. Are there pieces missing, whether
technical or logistical, to this puzzle?
How does the Jini/J2ME platform com-
pare to others you’ve used for interac-
tive, wireless device applications? Your
thoughts and suggestions are wel-
come.

H
om

e
J2

E
E

J2
SE

J2
M

E

By creating an interface we have one

more file to add to our J2ME JAR. With

some phones having an application limit

of 50K, why add unnecessary bloat?

“
”

AUTHOR BIO
William Swaney, a
software developer

specializing in
distributed computing,

works for Valaran
Corp., where he

experiments with
mobile devices and

Jini networks.

wrswaney@netscape.net

/**
* An encapsulation of an http connector registration protocol.
*
* @author William Swaney
* @version 1.0
*/

import java.io.*;

public class HttpInterconnectRegistration implements
InterconnectProtocol
{

public static final int VERSION_NUMBER = 1;

private short surrogateUrlLength=0;
private byte[] surrogateUrl;

private int initializationDataLength=0;
private byte[] initializationData;

private int lengthOfSurrogate=0;
private byte[] surrogate;

private java.io.DataInputStream din;

public HttpInterconnectRegistration()
{
}

public void read(InputStream in) throws IOException
{

throw new IOException(); //We should create our own excep-
tion here

}

public void write(OutputStream out) throws IOException
{

if (out == null) throw new IOException();

if ((surrogate == null && surrogateUrl == null) ||
(surrogateUrlLength == 0 && lengthOfSurrogate == 0))

throw new IOException();

DataOutputStream dataOut = new DataOutputStream(out);

dataOut.writeInt(VERSION_NUMBER);

dataOut.writeShort(surrogateUrlLength);
if (surrogateUrlLength > 0) dataOut.write(surrogateUrl);

dataOut.writeInt(initializationDataLength);

Listing 1

Java COM

71MAY 2002

Java COM

Ashnasoft
Corporation

www.ashnasoft.com

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

72 MAY 2002

if (initializationDataLength > 0)
dataOut.write(initializationData);

dataOut.writeInt(lengthOfSurrogate);
if (lengthOfSurrogate > 0) dataOut.write(surrogate);

dataOut.flush();
}

public void setSurrogateUrl(byte[] surrogateUrl)
{

this.surrogateUrl = surrogateUrl;
surrogateUrlLength = (short)this.surrogateUrl.length;

}

public void setSurrogateUrl(String surrogateUrl)
{

setSurrogateUrl(surrogateUrl.getBytes());
}

public void setInitializationData(byte[] initializationData)
{

this.initializationData = initializationData;
initializationDataLength = this.initializationData.length;

}

public void setSurrogate(byte[] surrogate)
{

this.surrogate = surrogate;
lengthOfSurrogate = this.surrogate.length;

}
}

/**
* An encapsulation of the response message sent from the http

connector to the device.
*
* @author William Swaney
* @version 1.0
*/

import java.io.*;

public class HttpInterconnectResponse implements

InterconnectProtocol
{

private int protocolVersion;
private short surrogateConnectUrlLength=0;
private byte[] surrogateConnectUrl;

private java.io.DataInputStream din;

public HttpInterconnectResponse()
{
}

public void read(InputStream in) throws IOException
{

din = new DataInputStream(in);

protocolVersion = din.readInt();

surrogateConnectUrlLength = din.readShort();
surrogateConnectUrl = new byte[surrogateConnectUrlLength];
din.readFully(surrogateConnectUrl);

}

public void write(OutputStream out) throws IOException
{

throw new java.io.IOException(); //We should create our
own exception here

}

public int getProtocolVersion()
{

return protocolVersion;
}

public short getSurrogateConnectUrlLength()
{

return surrogateConnectUrlLength;
}

public byte[] getSurrogateConnectUrl()
{

return surrogateConnectUrl;
}

}

Listing 2

AppDev Training
Company

www.appdev.com/promo/MG00052

73MAY 2002

Java COM

New Atlanta
Communications

www.newatlanta.com

Java COM

74 MAY 2002

When the rubber finally meets the pavement, we usually
find many complicated and awkward problems. Differences in
hardware, operating system configurations, or setup informa-
tion can bring our carefully designed and crafted software to a
halt in an unexpected environment. Other common problems
are versions that don’t match, missing packages or libraries,
different names for environment properties, and so on.

Most of us who have had to write installation programs or
scripts are aware of the sometimes embarrassing amount of
time needed to get an already-working software system oper-
ational on different target machines. I remember a colleague
who promised to eat a floppy disk if the installation script
failed one more time, and was consequently served a tossed
floppy salad a few hours later...with dressing.

Meet the OSGi Service Platform, Release 2 specification.
This specification is the result of two years of intensive collab-
oration between OSGi members (Sun, IBM, Ericsson, Nokia,
Motorola, Oracle, Telcordia, HP, and 70 others). It has already
been implemented by several vendors, and development ver-
sions can be downloaded from Gatespace, IBM, ProSyst, Sun,
and others. It allows independent application developers to
develop software that can be remotely managed for different
standalone computers, processors, and operating systems of
various sizes and configurations. This list includes, but is def-
initely not limited to, embedded computers.

The specification relies heavily on Java, the obvious choice
when the final platform can’t be restricted to Microsoft

Windows hardware requirements, or where high reliability
and availability is needed. On top of Java, the specification
defines a framework that addresses the needs of a platform
that’s running continuously, and must run a dynamically
changing set of applications, and react directly – without
supervision – to changes in its environment.

A key concept in the framework to achieving these desired
properties is the service. A service is a Java object that’s registered
with the framework and is to be used by other applications. The
functionality of a service is defined by the interfaces it imple-
ments. This allows many different applications to implement
the same service type. For example, a service for logging could
be optimized for local storage and another implementation
could use a remote management system. For the user of this log
service, there should be no detectable difference.

On top of the framework, the OSGi has defined a number
of services that can be used by applications. This rapidly
expanding list contains the following services:
• Log service: Provides a way to log information from applications

and a way to receive the log entries while they’re being made.
• HTTP service: Provides a Web server (HTTP or HTTPS,

depending on the implementation) that supports servlets
and static files. Combined with the other features of the
framework and services, this is probably one of the easiest
ways to deploy Java servlets.

• Device access: Supports the automatic download of device
drivers, allowing for true plug and play.

H
om

e
J2

E
E

J2
SE

J2
M

E

75MAY 2002

Java COM

Fiorano
Software

www.fiorano.com/tifosi/freedownload.htm

Java COM

76 MAY 2002

• Configuration management: Allows management systems
or applications to set the configuration parameters of appli-
cations in real time, without requiring a restart when the
parameters have changed. The specification uses a
metatyping specification that allows applications to discov-
er the (localized) details of data types that are needed for a
particular application.

• Preferences: Supports a hierarchy of properties. This simpli-
fied database can be stored locally or on a remote back end.

• User admin: Provides a repository of users and includes
authentication and authorization of those users. Many dif-
ferent authentication systems are supported.

The following are some of the services that will probably be
added in the next release:
• Wiring admin: Provides a comprehensive model to connect

different services into larger function blocks. This allows
simple scenarios, such as connecting a switch to a light, but
can also be used to connect a GPS to a navigation system.
Filters can be used to do conversions or thresholding.

• Position service: Initially targeted at the car industry, it was
found to be useful in other contexts as well. Just think of an
electronic vacuum cleaner in your residence.

• Message- and connection-based communication: A special
federated address concept that allows OSGi applications to
communicate transparently (under full security control,
obviously) even when they’re separated by multiple fire-
walls or use different communication technologies (e.g., IP
and SMS of mobile phones).

• Certificate support: Simplifies the validation of certificates
and provides access to the certificates of the local or remote
management systems.

• Execution environment: One or more definitions of what
classes and methods minimal environments should sup-
port.

This list will expand significantly in the near future. OSGi
has many expert groups working in certain areas. These
groups adopt existing standards or develop derived specifica-
tions that add to the list of available services. Other groups are
working on adopting OSGi specifications or developing their
own specifications for vertical markets. The OSGi is open and
invites companies to participate in this specification process
(see www.osgi.org).

Applications can also use standard Java libraries. These
libraries can be wrapped in the application’s delivery file or
referred to from the manifest file. Versioning issues are explic-
itly managed by the framework.

Figure 1 shows how the different parts are related. It also
shows that bundles (the OSGi applications) can use the OSGi
Framework and all standard Java libraries, and access the
operating system with the underlying hardware.

A key aspect of the OSGi is that there are numerous ven-
dors (e.g., Gatespace, IBM, ProSyst, and Sun) that implement
the specifications while they’re being developed. In addition,
the OSGi expert groups develop a reference implementation
and test suites for each specification. This means that the
specifications are practical, usable, and have multiple
(choice!) industrial-strength implementations available (most

of the vendors actually have free downloadable SDKs for eval-
uation purposes). An open source implementation called
Oscar (that still has some work to do, especially to match
release 2) can be found at http://oscar-osgi.sourceforge.net.

The Framework
The framework is the part that changes a Java Virtual

Machine from a single application environment into a multi-
ple one. The advantages are many: running multiple applica-
tions in a single VM means fewer process swaps, fast interap-
plication communication, and significantly less memory con-
sumption. Protection between the applications is provided by
the Java runtime and the framework.

The concept of a bundle is used to represent these multiple
applications. A bundle is a Java ARchive (JAR) file containing
“parts” that are needed to run the application, and a manifest
file declaring the parts that should be available when the
application is started. These parts are provided by other bun-
dles or by the environment. Dependencies are fully managed
by the framework. When bundles are started, they usually reg-
ister and get services. Services are Java objects defined by a
Java interface that can be found in the framework service reg-
istry. Bundles can communicate only through these services
(see Figure 2).

Management Bundle
An important concept of the OSGi specifications is the so-

called “management bundle.” This is a bundle with adminis-
trative privileges. Management bundles are required because
the framework is “policy free,” i.e., it provides many mecha-
nisms but carefully tries to abstract itself from decision-mak-
ing. These decisions, the policies, are provided by the man-

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 1 OSGi environment

key aspect of the OSGi is that there
are numerous vendors that implement the

specifications while they’re being developed”“A

77MAY 2002

Java COM

eXcelon
Corporation

www.exln.com

Java COM

agement bundle and will vary from installation to installation.
Management bundles are responsible for managing the envi-
ronment. Many different types exist: command-line consoles,
remotely managed SNMP-based bundles, Web-based inter-
faces, and static configuration–based management bundles.

One of the management bundle’s many responsibilities is
installing bundles. An API is provided that gives the framework
a Java InputStream object and a name. The InputStream is con-
nected to a JAR file that contains the classes and resources that
are provided by that bundle. This fits seamlessly with the Java
URL and file system model. Uninstalling doesn’t require a com-
plicated uninstall script – the framework is fully aware of all the
aspects that are part of the bundle and can completely clean up
after itself. It even cleans up the private files that were generat-
ed by the bundle. Updating the bundle is just as simple.

Package Dependencies
Once a bundle is installed it needs to be started. However,

there are dependencies specified in the JAR file that need to be
resolved. These dependencies are about packages. Java classes
are always contained in a package. This is the first part of the
name of the class (until the last “.”), e.g., the package of
java.lang.String is java.lang.

A bundle can use packages in three different ways. First, it
can have private packages. All classes of the bundle that don’t
need to be shared with other bundles should be private.
Different bundles can thus include the same packages.

Second, classes that need to be shared with other bundles
should be exported. Interfaces and classes that are used to
communicate (e.g., the interfaces that define the services)
must be exported or else the bundles will run into
ClassCastExceptions when they exchange objects. Any bundle
can specify any package for export. The framework will ensure
that only one of the bundles at any time will export a specific
package.

Third, the bundle can also specify that it needs certain
packages; for example, that the classes in its JAR file refer to the
javax.servlet and javax.servlet.http packages. Imports require
an associated export. The framework will pick only one bundle
to export a specific package at any time to prevent
ClassCastExceptions. The decision of which bundle to pick for

export is further guided by the versions (all package ref-
erences can contain a version specifier) and security.

Figure 3 shows how packages can be

imported from the framework (or
standard Java classpath) or other
bundles, or exported. The resolving

of these packages is under the control
of the framework and may be subject

to security checks.
Bundles can also include other JAR

files. The manifest can be used to tell the
framework that this JAR file contains a

library that must be available on the classpath.
For example, a bundle could include the

servlet.jar JAR file and then export the javax.servlet

and javax.servlet.http packages. Managing the classpath is one
of the framework’s most important tasks. Some people have
said that the OSGi specifications deliver the original promise
of classloaders and classpaths.

Native Libraries
The JAR files can also contain native libraries. These

libraries are not restricted to a single hardware/OS architec-
ture. The manifest can contain a specification of which
libraries are intended for which architecture. The frame-
work will find the set of possible libraries and load the best-
fitting one. The framework will handle all complicated
library path issues that normally plague the deployment of
native code.

Starting the Bundle
After the dependencies are resolved and the right bundles

are picked to export, the bundle needs to be started. For this
reason, the manifest contains a header that points to a special
class: the activator. An object of this class is created and cast to
a BundleActivator. This interface contains a start method and
a stop method that are used to start and stop the bundle. For
efficiency reasons, these methods should return quickly or
they’ll block the system. They normally start a background
thread or get/register some services. The stop method cleans

up all the parts that the framework can’t directly clean up and
stops any threads.

Service Registry
A started bundle is expected to provide some utility to the

end user. It’s highly likely that it’s using services to provide this
functionality to users and other bundles. The services – Java
objects implementing a service interface – are available from
the framework registry. This registry is searchable with a simple
but very expressive filter. The syntax of this filter is derived from
the LDAP filter syntax RFC-1960. This type of filter can have
comparisons for equality (=), magnitude (<=, >=), substring

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 2 Bundles, services, and the OSGi framework

78 MAY 2002

he framework is the part that

changes a Java Virtual Machine from a single

application environment into a multiple one”“T

79MAY 2002

Java COM

Borland
Software Corp.

www.borland.com/new/optimizeit/94000.html

Java COM

80 MAY 2002

(*x*), presence (*), and approximate matches (~=). Expressions
can be AND (&), OR (|), NOT (!), and nested to any depth.

For example:

(& (service.pid=USB-1232312452)(|

(vendor~=ericsson)(vendor~=ibm)))

This filter language is used to search the framework, to pre-
filter events before they’re delivered, and, in many service
specifications, to find objects.

The properties that are used in a search are given to the
framework when a service is registered. Some properties (like
the interfaces that the service implements) are automatically
set by the framework, some properties have defined semantics
(like “service.pid” is a unique identifier for a service), and
other properties are defined by the bundles themselves. Each
property can, as with LDAP, have multiple values; for example,
a device needs to be registered with a property DEVICE_CAT-
EGORY. However, a device that fits multiple device categories
can put the categories in an array or a vector object.

Dynamism
A cornerstone of the OSGi architecture is dynamism.

Bundles can be installed, updated, started, stopped, and unin-
stalled at any time; devices can come in any range and be rep-
resented in the framework registry at any time. This makes the
environment extremely dynamic. Therefore, the framework
offers a comprehensive model for writing applications for such
an environment. All important changes to the environment are
sent to listeners that have specified an interest in these events.

Installation, start, stop, and update of bundles is sent out
as bundle events. Management bundles can use these events
to apply their policies (for example, the security settings or
installing required support bundles) at the appropriate time.
Service registrations, unregistrations, and modification of
service properties are sent as service events (see Figure 4).

Bundles use these events to adapt to the changes in the
environment. For example, when a digital camera is plugged

into a FireWire network,
a device service repre-
senting this camera is
registered. A bundle that

controls a monitor can
then react to this registra-

tion and add this new cam-
era to the monitor’s menu. A

special class, the ServiceTracker,
is provided to simplify this process

of tracking services in the registry,
which makes using this dynamic model trivial.

Though the dynamism undoubtedly introduces a certain
amount of complexity into the programming, the benefits are
huge. OSGi-based environments don’t have to be rebooted
when configuration changes take place or bundles are
installed and updated. The environment adapts itself to the

bundles, devices, and services available – a must for a stand-
alone, continuously running server.

Cleaning Up
Running a number of bundles together in a single VM and

sharing the resources is not always easy; therefore, the framework
closely tracks the dependencies between the bundles. When bun-
dles are stopped or uninstalled, the framework will use its exten-
sive knowledge of these dependencies to clean up as much as pos-
sible. Services registered by a bundle are automatically unregis-
tered and services used from the framework are returned. This sig-
nificantly minimizes the complexity of sharing a VM.

Security
The framework has been targeted to run multiple inde-

pendent bundles simultaneously. It was assumed from the
beginning that these bundles couldn’t all be trusted in such an
environment; therefore, security is paramount. That’s the rea-

son the OSGi has adopted the Java 2 security model. In this
model, a certain “type” of security is represented by a
Permissions class. For example, access to the file system is
guarded by the FilePermission class. These permissions are
associated with the code base, i.e., the place where the code
came from. When a permission needs to be verified, the
checker creates an instance of the appropriate Permission
class and calls the SecurityManager with this object. This will
assure that the stack is crawled, and each caller is checked to
see if it has a Permission object. For example, when a file is
opened, the Java IO runtime system creates a FilePermission
object with the filename as a parameter and with READ as the
action. The caller (and all its callers) are then checked to see if
its set of permissions include a FilePermission object that
implies the given filename and action.

Normally, Permission objects are associated with code
bases through the Policy class. The default policy reads the

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 3 Sharing of Java packages

“A cornerstone of the OSGi

architecture is dynamism. Bundles can be installed,

updated, started, stopped, and uninstalled at any time”

81MAY 2002

Java COM

Pramati
Technologies

www.pramati.com

Java COM

82 MAY 2002

permissions from a file. Permissions can normally be granted
on a file basis or when certificates are used on the signer basis.
This is so flexible that it’s sometimes quite confusing.

Therefore, the OSGi has simplified the model significantly
by granting permissions only on a per-bundle basis. As is cus-
tomary in the OSGi specification, the mechanism to associate
the permissions with the bundle are made in such a way that
an operator can use his or her own policies, bought from net-
work management vendors or rolled by the operator’s staff.

Management bundles have two mechanisms available for
permission-handling. One, there’s a special service,
PermissionAdmin, that permits a management bundle to set,
get, and reset the bundle and default permissions. The per-
missions are associated with the location (this is normally the
URL where the bundle comes from). This makes it possible to
set the permissions before the bundle is actually downloaded
in the environment. However, there’s also the possibility of
just-in-time permission-setting.

Two, a management bundle can register a Synch-
ronousBundleListener with the framework. This listener is
called when the bundle is installed but before the bundle has
had a chance to do something (including exporting code). At
this moment, the management bundle can look up the per-
missions and set them.

As always, using secure systems doesn’t make life easier for
the developer, but at least the OSGi environment makes the

Java 2 security model significantly less painful to
use in practice.

Framework Permissions
The framework introduces three new permission types:

ServicePermission, PackagePermission, and AdminPer-
mission.

AdminPermission gives the owner the authority to manage the
framework. Management bundles require AdminPermission to per-
form their numerous duties. This AdminPermission is a broad per-
mission class intentionally. Administering and configuring large-

scale installations is complex and error-prone. Therefore, these
tasks should be minimized as much as possible. Having one broad
permission for administrative tasks was deemed more than suffi-
cient and significantly reduces the administration of permissions.

Bundles can import and export Java packages as explained
earlier. This is obviously a security risk because malicious
bundles could export an innocent-looking package that’s
inadvertently used by an important bundle. Also the reverse, a
bundle importing a package that it might use to do “evil”
things should be under strict operator control. These threats
are mitigated with the PackagePermission class. Package-
Permission classes can hold the name of a package (including
wildcards) and the action export or import.

As usual, some bundles are more equal than others and the
ServicePermission class is intended to differentiate between
them. Bundles can be given permission to register or get a spe-
cific service (or a wildcard). Conforming frameworks must
ensure that when a bundle doesn’t have this permission, it
won’t be able to detect the existence of such a service. For
example, when a bundle registers an HTTP service object with
the framework, another bundle that doesn’t have
ServicePermission(HttpService,GET) won’t even be able to see
the registration event of that service.

This is a powerful mechanism that’s broadly used in the
OSGi specifications to raise firewalls between bundles. For
example, in the configuration management specification

there are two parties: the Configuration Admin service that
configures clients and the clients that are configured. Both are
represented as services in the framework service registry.
However, registering a Configuration Admin service is a privi-
leged action, reserved for the bundle designated by the opera-
tor. On the other hand, registering as a client is allowed by
basically every bundle. Getting the client service is again priv-
ileged and getting the Configuration Admin service is not.

It turns out that many security schemes don’t require spe-
cial Permission classes, but can leverage the expressive power
of ServicePermission.

Applications
The framework, though initially targeted at residential

gateways, has already found a wider audience. The car indus-
try is showing great interest in the OSGi specifications and is
currently participating in continuing the effort. The applica-
bility of the specifications is even wider than gateways in cars
or homes. It can be used to deploy applications in almost any
environment where they consist of multiple components that,
together, form the needed functionality. The ease of remote
management, a well-defined environment, numerous avail-
able tools, security, many industrial-strength SDKs, and the
dynamic collaborative environment make it interesting for
many software deployment problems, from PC-based applica-
tions to high-end Unix application servers, from servlet-based
applications to cellular network base station controllers
somewhere out in the countryside. Why not give it a try!

H
om

e
J2

E
E

J2
SE

J2
M

E

peter.kriens@aqute.seFIGURE 4 Service events

AUTHOR BIO
Peter Kriens, an OSGi
technical officer, also
worked for Ericsson

Research in Stockholm,
where he got involved

with home servers and
residential gateways.

Peter studied electronics
in Alkmaar, Holland.

“Though the dynamism undoubtedly
introduces a certain amount of complexity into

the programming, the benefits are huge

83MAY 2002

Java COM

InetSoft
Technology Corp.

www.inetsoft.com/jdj

Java COM

84 MAY 2002

Keep Mobile Data
and Applications in Sync with Java

P R O F E S S I O N A L L Y M O B I L E

Which professional is able to have
continuous access to data and applica-
tions – the doctor, who is always con-
nected to the wireless LAN network, or
the field worker, who experiences only
intermittent connectivity?

The answer is both. The doctor and the
field engineer can have uninterrupted
access to data and applications, without
the unrealistic expectation of continuous
wireless connectivity, if they’re equipped
with an “always-available” mobile solution.

Java provides the foundation for
always-available mobile applications.
For example, a J2ME-enabled mobile
device can operate in both wireless and
disconnected modes. Unlike browser-
based WAP or HTML applications, J2ME
applications are persistent; a J2ME
application can function on a cellular
phone, laptop, or PDA without a wire-
less connection. When a wireless con-
nection is established, however, the
J2ME application can communicate
with the corporate network, sending
and receiving data changes, additions,
and deletions.

Java’s ability to work in all modes
makes this technology invaluable for all
types of environments and mobile
applications. In addition, the user inter-
face of a J2ME application can be cus-
tomized and enriched with graphics,
media components, and more intuitive
navigation to improve the user experi-
ence. The challenge, then, is to tailor a
Java-based solution around the business
needs, the nature of the work, and the
mobile environment.

Always-Available Mobile Applications
The need for mobile applications to

operate in any mode is the result of
three overriding business concerns:
1. Limitations in network infrastructure
2. Low wireless connection bandwidth
3. Cost of wireless service

First, current limitations in network
coverage make disconnected applica-
tions a must-have for the mobile pro-
fessional. Whether a sales representa-
tive is traveling on a plane or a field
engineer is in the desert fixing a
pipeline, they must all be productive
with or without the benefit of a wireless
connection. Until wireless connections
are ubiquitous and 100% reliable
around the world, disconnected func-
tionality will remain invaluable to the
mobile worker.

Low wireless connection bandwidth
is also an issue with most mobile profes-
sionals. It will continue to be a bottle-
neck, even with GPRS and 3G networks.
Synchronizing applications only when
necessary is therefore of great value. A
field engineer, for example, may not
want to update daily job information
every time he or she enters one line of
data; the engineer may simply need to
ensure all jobs have been entered, veri-
fied, and completed intermittently
throughout the day.

Airtime minutes will continue to be a
cost factor until carriers and other wire-
less network providers switch to a true
data usage–based model. Synchro-
nization eliminates the needless over-
head of “dead” airtime minutes used
during a wireless data session in which a
user is charged even though no data was
exchanged during the wireless connec-
tion (such as when reading e-mail). The

beauty of synchronization is that it
allows the user to connect to the net-
work only if data transmission is neces-
sary, and automatically disconnect
when the transmission has been accom-
plished.

In this environment, choosing the
appropriate synchronization model is
critical to successfully deploying mobile
applications.

Mobility Achieved with a Java
Synchronization Solution

There are several synchronization
approaches. File sharing is one common
option, but it requires the presence of
databases on both the client and the
server. This becomes cumbersome if all
you want to do is synchronize data
between enterprise and client applica-
tions, neither of which stores data in
databases. It also often requires a pro-
prietary file format for transporting the
data between devices.

Application-level synchronization is
another option, but its shortcomings
include the inability to extend the syn-
chronization solution across multiple
applications and back-end databases.
Since this synchronization solution is
specific to the application, multiple
solutions may need to be supported
when a project requires access to more
than one enterprise application.

An optimal synchronization solution
would sit between the application and
database level, allowing objects or com-
ponents to freely synchronize with one
another. This is possible using Java (see
Figure 1). By allowing a server’s data
access layer to synchronize directly with
the client’s data-access layer, it doesn’t

WRITTEN BY
JEFF CAPONE

Here’s a quiz: consider a physician accessing different
patients’ histories on a PDA while making rounds at a Manhattan
hospital versus a field engineer whose responsibility is to monitor
and repair sections of an oil pipeline that stretch across 200 miles
in Texas.

An integral part of your mobile strategy

H
om

e
J2

E
E

J2
SE

J2
M

E

85MAY 2002

Java COM

Softwired, Inc.
www.softwired-inc.com

Java COM

86 MAY 2002

P R O F E S S I O N A L L Y M O B I L E

matter which type of databases or appli-
cations need to be synchronized, or
which client devices need to be support-
ed. Any database, application, or client
device can synchronize at the data
access–layer level by communicating
with industry-standard interfaces,
including JDBC, EJB, XML, JCA, JMS,
and HTML. You can extend any J2EE
services existing on the server to a
mobile client device.

Architecting a Java Synchronization Solution
Conflict resolution during synchro-

nization usually depends on complex
business rules that are set by the user
and require a robust solution to appro-
priately handle these rules. Such a solu-
tion should support the following:

• Multiple Device Support
A robust synchronization solution

should be functional on multiple client
devices that support offline deploy-
ment. J2ME is only one type of client
technology that needs to be supported.
Other platforms such as PersonalJava
(pJava), J2SE, and WABA can also be
supported by your wireless platform
without requiring additional or third-
party add-on products.

Should your synchronization solu-
tion connect directly to the client appli-
cation or require a client database, you’ll
need to provide for cross-device func-
tionality. The best way to ensure this
functionality is to connect your syn-

chronization solution to the data-access
layer of the client application. This
method allows your synchronization
solution to remain flexible in light of the
various client devices, platforms, and
applications.

• Real-Time and Asynchronous Access
Synchronization should not be a

standalone product, feature, or func-
tion. Your mobile solution should sup-
port both real-time (e.g., browser-
based) and offline access (e.g., client
application and synchronization) to
corporate back-end applications and
content. Find a vendor who can provide
both types of products – otherwise you’ll
be left with integration and incompati-
bility issues between your connected
and disconnected solutions.

• Client-Side Data Caching
Mobile devices should not require a

client database for your synchronization
solution to work. Many devices don’t
even have a file system that supports a
client database (e.g., Compaq iPaq). If
your synchronization solution does
depend on a client database, it will
require you to add more software prod-
ucts than necessary, raising incompati-
bility and memory-limitation issues on
your client device.

Using the client’s cache is a more
practical solution. Given that the device
will have local memory capacity, you
can achieve persistence using this mem-

ory. The memory used for persistence is
also less than that used by a client data-
base. Having made the argument for
using a caching solution, it’s still impor-
tant that your synchronization solution
supports the use of a client database
should it be needed due to the nature of
the work or the application.

• Multiple Enterprise Connections
Your synchronization solution

should be able to interface with multiple
server-side applications and databases.
Avoid using synchronization solutions
directly from enterprise application
providers; they may work with that par-
ticular application, but are not likely to
interface well with other back-end con-
tent. Find a solution that’s open and
allows you to interface with multiple
back-end solutions; this will save you
from significant upgrade and mainte-
nance headaches. You’ll need to support
connections to JDBC, EJB, XML, JCA,
JMS, and HTML data sources, among
others.

• Open APIs
Find a mobile solution that allows

you to develop using API-level access.
This development approach enables
you to easily integrate with third-party
software applications and preserves the
flexibility of your current and future
mobile strategy.

• Open Application Development and
Java Support
Ensure that the applications you

develop, on both the server- and client-
side, use open architectures and indus-
try-standard development methodolo-
gies. The most fitting solution for this
paradigm is J2EE on the server-side, and
J2ME/J2SE on the client-side. If you
already have Java in the enterprise, your
mobile solution should extend this
investment to client devices. Look for a
solution that allows you to extend your
existing J2EE components or services to
mobile devices without the need to
rearchitect your existing enterprise IT
infrastructure.

• Flexible Business Logic and Syn-
chronization Rules
Conflict resolution rules should

always take into account the intended
functionality of the application. Such
synchronization rules can’t take a “one
size fits all” approach to resolving con-
flicting data information. In most cases,
“last in wins” conflict resolution can
have a disastrous effect on the applica-
tion data accuracy. Synchronization
rules should be flexible enough to sup-

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 1 Java and synchronization handle all mobile environments

Wireless Gateways

Mobile
Java Clients

WAP/Browser
Based Clients

Intermittent Connectivity

Internet

Databases

Legacy
Systems Enterprise

Apps

Corporate Firewall
Sync EngineMiddleware

Mobile Application Server

87MAY 2002

Java COM

ITtoolbox
www.Ittoolbox.com

Java COM

88 MAY 2002

P R O F E S S I O N A L L Y M O B I L E

port the various business logic rules of
the application, allowing developers
and/or users to decide which priority
settings should be used if a data conflict
occurs.

• Logging Tables
Whatever the outcome of the con-

flict, log tables are necessary to docu-
ment the results. They must be reliable
and easily accessible from within vari-
ous administrative environments, dis-
playing results as hierarchical tree views
of log data, for example. Log tables
ensure that even when a conflict occurs,
none of the data is lost and the subse-
quent rollback of the initial conflict res-
olution can occur.

• Security
Allowing mobile devices access to

your corporate networks produces secu-
rity nightmares among your IT staff.
Make sure your mobile strategy incor-
porates industry-standard security tech-
nology to encrypt the connection
between the mobile device and your
corporate networks.

Understanding Development and
Implementation Issues

J2ME is only one type of client tech-
nology that allows for disconnected
applications. Due to the variety of
mobile devices, different technologies
emerged to take advantage of the differ-
ences in functionalities offered by each
device. The two prevalent technologies,
both of which happen to be Java-related,
are J2ME and PersonalJava (or pJava).

J2ME is mostly used on mobile
phones and requires a micro Java Virtual
Machine. While the proliferation of
J2ME phones is currently very low,
future mobile phones are expected to
incorporate this technology. Nokia, for
example, is currently making a big push

into shipping J2ME phones worldwide.
PJava is generally used on Pocket PCs

and takes advantage of the underlying
functionality of the operating system. It
can deliver a better user experience than
a cell phone, due to the additional soft-
ware and hardware functionality of the
mobile device. It appears unlikely that
these two technologies will merge any-
time in the near future. In fact, it’s more
likely that new client technologies will
emerge, highlighting the need for a
robust mobile and synchronization
solution that will take these future
changes into consideration through
open, flexible, and extensible architec-
tures.

Deciding on a synchronization solu-
tion is not much different than deciding
on a real-time wireless solution. The
solution should be based on open stan-
dards, leverage existing investment in
technologies, and be flexible enough to
accommodate future changes in tech-
nologies or business direction.

There are many add-on synchroniza-
tion solutions that may work with your
existing enterprise and mobile initia-
tives. Add-on solutions, however, don’t
provide the most flexible and robust
synchronization as compared to inte-
grated solutions. An integrated solution
should provide both real-time and
offline functionality of your mobile proj-
ect. Synchronization should be a simple
extension of your real-time wireless
solution and shouldn’t require a sepa-
rate technology or software/services
vendor.

Whether add-on or integrated, the
synchronization solution must be based
on open standards and remain flexible
for future changes in technologies, not
just synchronization technology. An
open solution is something that can be
managed without the help of the vendor
or specialized systems integrator. As

with any software solution, you should
not be dependent on the company that
produced or sold the software to you,
but be able to manage the solution with
existing in-house resources.

Conclusion
When selecting a synchronization

solution, many factors play an impor-
tant role in choosing the solution that’s
appropriate for the task at hand.
Choosing the best-of-breed synchro-
nization solution may not turn out to be
the correct choice when you consider
other factors. You should make your
decision based on a wide variety of
influencing issues that are not limited to
just your mobile strategy. First, deter-
mine the business requirements of your
project. Will a wireless solution without
offline capability suffice? If not, do you
need a mobile solution that can operate
in a disconnected mode? Do you need
both, allowing certain parts of your
organization to use one or the other?

Second, know your existing enter-
prise and client technology, including
both your software and hardware invest-
ments. Do you plan on building a new
mobile project from scratch? Do you
plan on extending an existing enterprise
application? Have you invested in Java
technology? Are you looking to integrate
the wireless/mobile solution into your
existing IT infrastructure? Are you look-
ing to build out a completely separate
wireless/mobile island, away from the
corporate IT system? What type of
devices do you plan on supporting – just
one or many? Are you planning on
mobile-enabling just one or many
enterprise applications? Do you need
direct access to database content from
mobile devices?

Third, evaluate the vendors. Choose
one that fits your needs. The more open-
ness and flexibility you (or your vendor)
preserves, the better. Choose a product
vendor, not a services vendor. Look for a
vendor who focuses on and has experi-
ence with mobile technologies. Con-
sider the total long-term cost of owner-
ship of your mobile solution, not just the
products and/or services cost in the first
year.

Synchronization solutions are a
must-have for the mobile professional.
The current limitations in wireless con-
nectivity require client applications to
function even in an offline mode of
operation to enhance the productivity of
the end user. Synchronization solutions
should therefore be an integral part of
your mobile strategy.

AUTHOR BIO
Jeff Capone, PhD, is
CTO of Aligo, where

he leads
the technology

development and is
principal architect of
the M-1 Server. He
has spent the past
decade researching

wireless applications. jcapone@aligo.com

H
om

e
J2

E
E

J2
SE

J2
M

E

Deciding on a
synchronization solution

is not much different than
deciding on a real-time

wireless solution

“

”

89MAY 2002

Java COM

Wireless
Subscription

www.wbt2.com

Oracle
Development

Tools User Group
www.odtug.com

Java COM

90 MAY 2002

Although I’ve been following EJB 2.0
very closely, it was only recently that I
walked into a project that was the per-

fect venue for its new features, such as the
much enhanced container-managed persist-
ence and local interfaces. And Enterprise
JavaBeans, written by Richard Monson-Haefel,
fit the bill as a reference and learning guide.

This is a “must-have” book if you want an
introduction to EJBs, are migrating from EJB
1.1 to 2.0, or want to build a new application
using EJBs. The author provides a brief intro-
duction to distributed objects and compo-
nent models in the first chapter; however, if
you’re unfamiliar with these concepts or with
database design, this is not the right book for
you. Enterprise JavaBeans talks in detail about
the obvious – Enterprise JavaBeans – and
stays focused on the subject.

I was very impressed with the organization
of the book, which made it a treat to read. One
of its main strengths is that it stays focused
on specific topics and cleanly separates the
1.1 and 2.0 versions of the EJB specification.
For example, if you’re only concerned with
designing a new application using EJB 2.0,
the information isn’t cluttered with recur-
ring references to the EJB 1.1 CMP model,
which is discussed in a separate chapter.

Chapter 1 introduces distributed com-
puting. Chapter 2 provides an excellent
overview of EJBs, including coverage of

the standard classes and inter-
faces, the types of beans, and
the deployment descriptor for
deploying beans. The author
has picked a generic applica-
tion to illustrate his examples –
a reservation for a cruise. If this
chapter had contained an
overall diagram illustrating the
entire hierarchy, including the
objects developed throughout
the book, it would have been a
perfect chapter on EJB archi-
tecture.

Chapter 3 deals with the
basic services provided by the
J2EE component transaction
monitors or EJB containers. It

provides a good discussion on such topics as
the EJB life cycle, object persistence, and the

bean-container contract. Chapter 4 walks you
through developing and deploying some basic

EJBs and covers application development con-
cepts from object design to basic database table
design. Chapter 5 covers the design of a basic
client to access the beans developed in Chapter
4. The discussion on local versus remote inter-
faces is very helpful.

Chapters 5–8 were, for me, the most useful
chapters in the book. Monson-Haefel walks you
through the nuts and bolts of designing entity
beans with the new EJB 2.0 persistence model.
Chapters 6–7 develop sample entity beans in
light of the new persistence model with very
lucid examples. The organization of the text is
excellent. Monson-Haefel begins each example
with the abstract programming model, followed
by the abstract persistence schema, then the
design of the bean interfaces and classes, and
finally the deployment of the bean. Each discus-
sion is autonomous and very clear.

Chapter 7 offers clear guidance on database
relationships as they relate to EJB 2.0 CMP.
Chapter 8 is a good reference for using EJB-QL.

Chapter 9 deals with EJB 1.1 CMP.
Chapters 10–11 discuss the details of bean-
managed persistence and the EJB container.
Chapter 11 has ample coverage of primary
keys, the entity context, and the life cycle of
entity beans.

Chapters 12–13 cover the other two types
of EJBs (session and message-driven beans).

The sample application is developed further
in these chapters by TravelAgent Bean,
Reservation Process Bean, and associated
workflows. Transaction design for EJBs is cov-
ered in Chapter 14.

Chapter 15 provides some excellent design
strategies for EJB design, such as using hash codes
to generate primary keys and dependent value
objects to pass objects to and from entity beans.
Chapter 16 is a reference chapter on the deploy-
ment descriptor for EJBs. This is followed in
Chapter 17 by an overview of how EJBs fit into the
big J2EE picture. The appendices provide concise
references to the EJB APIs and the state and
sequence diagrams for the different types of EJBs.

This is one of the best sources of informa-
tion on EJBs that I’ve found. It would have
been helpful if there were some diagrams of
the overall picture, but all in all, this is a very
well-organized book about using Enterprise
JavaBeans to develop applications.

Enterprise JavaBeans
Author: Richard Monson-Haefel
Publisher: O’Reilly & Associates

info
REVIEWED BY AJIT SAGAR ajit@sys-con.com

B O O K R E V I E W

Preface

1. Introduction
Setting the Stage
Enterprise JavaBeans Defined
Distributed Object Architectures
Component Models
Component Transaction Monitors
CTMs and Server-Side Component
Models
Titan Cruises: An Imaginary
Business
What's Next?

2. Architectural Overview
The Enterprise Bean Component
Using Enterprise Beans
The Bean-Container Contract
Summary

3. Resource Management and the
Primary Services

Resource Management
Primary Services
What's Next?

4. Developing Your First Enterprise
Beans

Choosing and Setting Up an EJB
Server
Developing an Entity Bean
Developing a Session Bean

5. The Client View
Locating Beans with JNDI
The Remote Client API
EJB 2.0: The Local Client API

6. EJB 2.0 CMP: Basic Persistence
Overview
The Customer EJB
Persistence Fields
Dependent Value Classes
Relationship Fields

7. EJB 2.0 CMP: Entity Relationships
The Seven Relationship Types

8. EJB 2.0 CMP: EJB QL
Declaring EJB QL
The Query Methods
EJB QL Examples
Problems with EJB QL

9. EJB 1.1 CMP
A Note for EJB 2.0 Readers
Overview for EJB 1.1 Readers
Container-Managed Persistence

10. Bean-Managed Persistence
The Remote Interface
The Remote Home Interface
The Primary Key
The ShipBean
Obtaining a Resource Connection
Exception Handling
The ejbCreate() Method
The ejbLoad() and ejbStore()
Methods
The ejbRemove() Method
The ejbFind() Methods
The Deployment Descriptor

11. The Entity-Container Contract
The Primary Key
The Callback Methods
EJB 2.0: ejbHome()
EntityContext
The Life Cycle of an Entity Bean

12. Session Beans
The Stateless Session Bean
The Life Cycle of a Stateless
Session Bean
The Stateful Session Bean
The Life Cycle of a Stateful Session
Bean

13. Message-Driven Beans
JMS as a Resource
Message-Driven Beans

14. Transactions
ACID Transactions
Declarative Transaction
Management
Isolation and Database Locking
Nontransactional Beans
Explicit Transaction Management
Exceptions and Transactions
Transactional Stateful Session
Beans

15. Design Strategies
Hash Codes in Compound Primary
Keys
Passing Objects by Value
Improved Performance with
Session Beans
Bean Adapters
Implementing a Common Interface
Entity Beans Without Create
Methods
EJB 1.1: Object-to-Relational
Mapping Tools
Avoid Emulating Entity Beans with
Session Beans
Direct Database Access from
Session Beans
Avoid Chaining Stateful Session
Beans

16. XML Deployment Descriptors
What Is an XML Deployment
Descriptor?
The Contents of a Deployment
Descriptor
The Document Header
The Descriptor's Body
Describing Enterprise Beans
EJB 2.0: Describing Relationships
Describing Bean Assembly
The ejb-jar File

17. Java 2, Enterprise Edition
Servlets
JavaServer Pages
Web Components and EJB
J2EE Fills in the Gaps
Fitting the Pieces Together
Future Enhancements

A. The Enterprise JavaBeans API

B. State and Sequence Diagrams

C. EJB Vendors

Index

Table of Contents

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

Enterprise
JavaBeans

LARGEST GATHERING OF DEVELOPERS,
PROGRAMMERS, AND i-TECHNOLOGY

PROFESSIONALS IN THE WORLD!!
JUNE 24-27, 2002 • JACOB K. JAVITS CONVENTION CENTER • NEW YORK, NY

Focus on Java
Java, now mainstream, is the dominant back-end

technology upon which next-generation technologies are
evolving.

Hear from the leading minds in Java how this
essential technology offers robust solutions to
i-technology professionals and senior IT/ IS strategy
decision-makers.

Who Should Attend…
• DEVELOPERS,
PROGRAMMERS,
ENGINEERS

• i -TECHNOLOGY
PROFESSIONALS

• SENIOR BUSINESS
MANAGEMENT

• SENIOR IT/IS
MANAGEMENT/C LEVEL
EXECUTIVES

• ANALYSTS, CONSULTANTS

XML
NEXT G
OF

ENTERPRISE

DEPLOYMENT

WEB
SERVICES
SKILLS,

STRATEGY,

AND

VISION

REGISTER BY MAY 31
TO SAVE $200!

GO TO WWW.SYS-CON.COM NOW!

Focus on
Web Services

Web Services, the next generation technology that will
enable the Internet to work for you and your business, and
finally provide that ROI you have been after, will be put under
a microscope at Web Services Edge East 2002.

Information-packed sessions, exhibits, and tutorials will exam-
ine Web Services from every angle and will provide cutting-edge
solutions and a glimpse at current and future implementations.
Hear from the innovators and thought leaders in Web Services.
Enjoy a highly interactive CEO Keynote panel that will debate and
discuss the realities and promise of Web Services.

Focus on XML
XML is today’s essential technology to develop

and deploy Web services. Here’s your chance to
learn from expert practitioners how XML is making
the next phase of the Web a reality.

Focus on standards, interoperability, content
management, and today’s new quest for more effi-
cient and cost-effective Internet and intranet-
enabled business process integration.

WINA $35,000
LUXURY CAR!

IT Strategy Track: June 25-27
The IT Strategy Track will focus on the managerial and design aspects of the various development disciplines. Topics will include
Standards, Architecture, Design Patterns and Best Practices, Project Planning and Management, and Extreme Programming.

IT1 Developing, Deploying and Managing Web Services
IT2 Key Trends and Technologies for Building an

Enterprise Web Services Architecture
IT3 Selecting a Framework: Toolkit, Platform, or

Roll Your Own?
IT4 Getting Started with Web Services
IT6 Overcoming the Web Services Barriers
IT7 The Real Issue: Improving Your Enterprise with

Enterprise Web Services

IT8 Minimizing Risks and Maximizing Investments in J2EE
Development Through the Use of Reusable Application
Architecture and Frameworks

IT9 Application Integration – Building a Flexible Web Services
Architecture

IT10 The Economics of Web Services
IT11 Hooking It All Together - Application Integration Case Study

ATTENDEES WILL BE INVITED
TO TAKE A GOLF SWING TO WIN
AND RIDE OFF IN A $35,000
LUXURY CAR!

.NET TRACK: June 25-27
Combining technology, platform, and architecture, the .NET Track provides
insight on the latest developments for the Windows platform.
NT1 Configuring .NET for Security, Performance, and Reliability
NT2 Changing Your Environment to .NET
NT3 Going Mobile with .NET
NT4 .NET on Other Platforms (FreeBSD, MONO, Portable .NET)
NT5 Inside the CLR
NT6 Accessing Data from .NET
NT7 Advanced .NET Web Services
NT8 Migrating Legacy Code to .NET
NT9 Advanced User Interfaces with GDI+

WS1 Starting Out In Web Services:
Fundamentals In Web Services

WS2 State of the Web Services Industry
WS3 Web Scripting Languages: Options for

Dynamic Web Development
WS4 Building a Web Services Application

Infrastructure
WS5 Deploying a Corporate Portal
WS6 The Enterprise Service Bus: (ESB):

Leveraging Web Services

WS7 Developments in Web Services
Standards

WS8 Unlocking the Value of Enterprise
Web Services

WS9 Guarding the Castle: Security and Web
Services

WS10 Practical Experiences with Web
Services and J2EE

WS11 Designing Web Services Using UML

JV1 Java Security Advanced Concepts
JV2 Optimizing Database Performance in

J2EE Applications
JV3 Detecting, Diagnosing, and Overcoming

the Five Most Common J2EE
Application Performance Obstacles

JV4 Building Asynchronous Applications
Using Java Messaging

JV5 Building “Smart Client” Applications
using J2SE and J2ME

JV6 .NET vs J2EE
JV7 Building Scalable Web Applications and

Web Services
JV8 Hot Breaking Session
JV9 Java Tools for Extreme Programming
JV10 Building Truly Portable J2EE

Applications
JV11 Security for J2EE Application Servers

XM1 Data - a Key Part of Web Services
XM2 OASIS Standards Update
XM3 A Universal Business Language
XM4 Achieving Standards-Based Mobile

eBusiness Success with XML & Web Services
XM5 Using XML for Rapid Application

Development and Deployment with Web
Services

XM6 Open Up Your RDBMS with Open
Standard Technologies

XM7 XML Web Services: Standards Update
XM8 Bringing XML to PKI
XM9 Building a Corporate Information Model

in XML
XM10 XML in the Enterprise and Inter-

Enterprise World
XM11 XML and RDB Relationships

Sponsored by

Java Track: June 25-27
The Java Track, with something for every developer from beginner to advanced, will also

look into the role that Java is playing in building up Web Services.

XML Track: June 25-27
The XML Track will focus on the various facets of XML technologies as they apply to solving

business computing problems. This track targets audiences ranging from beginners to system
architects and advanced developers.

Web Services Track: June 25-27
The Web Services Track will concentrate on the latest emerging standards. It will include

discussions of .NET, Sun ONE, J2EE and App Servers, the role of UDDI, progress of the stan-
dards-making bodies, SOAP, and Business Process Management. It is intended for developers,
architects, and IT management.

Java Fast Paths
Attend fast-paced, code-level, full-day Java technology developer training designed to
provide you with the skills to confidently approach the industry's core Java technolo-
gy certification exams. Don't just say you know it… prove it! Most developers rec-
ognize the expanding importance of gaining Java technology certification. If you're
like those who've already taken the exams, the real hurdle to certification is finding
time to prepare for the tests.

Monday, June 24, 2002:
• Java™ 2 Platform: Developer Certification Fast Path
• Java™ 2 Platform: Architect Certification Fast Path
• Web Component Developer: Certification Fast Path

Java UniversitySM

The Java UniversitySM Program complements this year's JDJEdge Conference by offering three aggressive, full-day, code-level training classes

for experienced software developers, architects and engineers.

Attend code-level training in sessions designed by industry luminaries, and recognized experts. Sessions cover XML and Web services technolo-
gy. Whether you're a beginning or a veteran developer, architect, or software engineer, you'll benefit from these value-packed full-day courses.
Register now. Seating is limited.

Tuesday, June 25, 2002
Developing Solutions Using Java™

Technology and XML

Wednesday, June 26, 2002
Web Services Programming Using Java™

Technology and XML

Thursday, June 27, 2002
Java™ APIs for Enterprise Web Services

Sun Microsystems at JDJEdge 2002: Java Fast Paths & Java UniversitySM Program at the Jacob K. Javits Convention Center, NYC

JAVA
IN
JUNE
ESPECIALLY

IN NEW YORK

OWNED AND
PRODUCED BY

FOR EXHIBIT INFORMATION CONTACT: MICHAEL PESICK 135 CHESTNUT RIDGE RD. • MONTVALE, NJ 07645 • 201 802-3057 MICHAEL@SYS-CON.COM

Java COM

92 MAY 2002

It’s unfortunate that programmers come
and go at an alarming rate in the IT
industry, leaving code that must be

maintained by someone who quite fre-
quently had no hand in writing it. Software
engineers using UML have models on how
their programs behave, but the rest of us
are left to read through reams and reams
of methods. Most of the time all you need
is an overview of how the program is
made up, not the finer details.

Java-Miner
CAST’s Java-Miner provides a graph-

ical “roadmap” of Java packages, classes,
and their associated methods and con-
structors. As the saying goes, “A picture
paints a thousand words”; this applica-
tion can tell the whole story behind Java
classes in a way that’s easy to interpret.

Installing and Using Java-Miner
Installation is straightforward. A

self-installing package can be down-
loaded from CAST’s Web site (it’s a 15-
day evaluation) or it can be installed
from the distribution CD. The Help doc-
umentation is also installed onto your
system, so you can use Help and pro-
gram simultaneously.

Java-Miner works via a series of wiz-
ards that guide you through the process of
loading in a Java application to view. When
starting the program you’re asked whether
you want to load an existing analysis or cre-

ate a new one. Creating a new analysis is a
simple process, again using a wizard to gath-

er the required information. A project name
is required, which becomes the XML output

filename. This, by default, is saved to the root
directory of the “C” drive on your system, so it’s
very important to use the directory-browsing
function to place the output files somewhere
sensible. In my opinion, this is a big oversight
and perhaps a default directory should be
included somewhere in the proceedings.
Within this wizard the Java source files and
associated classpaths are added. Once the

“Start” button is clicked, Java-Miner will ana-
lyze the packages and create the roadmap.

An object browser provides a dropdown
view of the analysis you’re working on. Many
IDEs work this way so most people will easily
make sense of this. The graphical layout is basi-
cally a large blank workspace that’s scrollable.
Within this area you can zoom in and focus on
specific components or zoom out for an overall
picture. These graphical views can be output to
a printer for a permanent copy of the analysis.

Working with the analysis is easy, but the
blank screen is a little off-putting to the new
user. I expected to see some sort of roadmap
on-screen, which could be customized as
required. Instead the user is expected to drag
the object onto the output screen, which
drops the object onto the roadmap. It’s up to
the user to expand the other methods and
constructors of that object by right-clicking
and then selecting “Expand.” The parts of the
object will appear and link together. The
expanded links provide a wealth of informa-
tion about where methods are called from and
which objects they belong to (see Figure 1).

For a programmer looking at some code for
the first time, it’s an enormous benefit to be able
to learn the program structure without reading
through pages and pages of source code.

With large applications the amount of
detail on the roadmap can be overwhelming,
so you can tailor the amount of detail dis-
played by setting up a series of layers. For
example, you can create a layer to display the
relationship links between the methods and
another layer to display the objects, not the
methods within them. Another useful feature is
Java-Miner’s ability to work its way through a
batch of objects and show a roadmap from one
specified method to another. So if you know
that an object references a method but can’t
see how, let Java-Miner do the work for you.

Summary
My first impressions were positive, though

I was a little surprised about the file locations
that Java-Miner was using; with a little plan-
ning this won’t be a problem for most people.
For those who need to maintain a working
application in which time is precious, Java-
Miner may be the answer.

Product Snapshot
Target Audience: Java programmers, busi-
ness analysts
Level: Beginner to advanced
Pros:
• Easy to use
• Graphical roadmaps are easy to read.
Cons:
• No default directory; used defaults to the

root directory

CAST
3, rue Marcel Allégot
92 190 Meudon
Paris, France
Phone:+33 1 46 90 21 00
Fax:+33 1 46 90 21 01
Web: www.castsoftware.com

Test Environment
Computer: Compaq Presario 1920
Processor: 300MHz Pentium III
Hard Drive: 4GB
Memory: 64MB
Platform: Windows ME

Specifications
Platforms: Windows 98, 2000,
or NT 4.0

info
REVIEWED BY JASON BELL jasonbell@sys-con.com

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by CAST

Jav
a-M

ine
r

FIGURE 1 Example Java-Miner roadmap

93MAY 2002

Java COM

Web Services
Edge Conference

& Expo
www.sys-con.com

Java COM

94 MAY 2002

Manifest Destiny

A P P R E L E A S E M A N A G E M E N T

This article presents some of the issues
involved with packaging Java code. I’ll
explore the Java manifest file and sug-
gest ways it can be used to manage JAR
file dependencies and to eliminate
classpath issues normally associated
with cross-platform deployment. I’ll
also explain how to use the package-
versioning features of the manifest to
ensure the compatibility of packages
used.

What Is a JAR File?
During development, Java classes are

normally compiled into local directories
on a disk. Java applications can be run
and even distributed in this manner, but
it’s not a practical way to work. Fort-
unately, a more manageable approach is
available. Java class files can be pack-
aged in Java Archive (JAR) files for distri-
bution and execution.

A JAR file is actually just a ZIP
archive of the class files. Using this well-
known archive format makes JAR files
exceptionally easy to work with. Many
tools and libraries exist for manipulat-
ing ZIP files, so for the developer the
tool set is very rich. However, since
they’re in a simple archive format, JAR
files can’t natively express metainfor-
mation about the applications they
contain.

The Manifest Is Born
To provide metainformation that

describes the archive, the JAR file desig-
nates a special directory to hold the
metainformation, the META-INF direc-
tory. For our purposes, I’m concerned
with only one file in this directory, MAN-
IFEST.MF. This is the manifest file for the
JAR. It describes the contents of the JAR
file and provides application informa-
tion to the JVM at runtime. Most JAR

files contain a very basic manifest file by
default. Try examining the META-
INF/MANIFEST.MF file using any JAR
(or ZIP) program. This can be done with
any ZIP file tool or by using the JAR com-
mand directly.

jar xvf myapplication.jar META-

INF/MANIFEST.MF

If your JAR file was created by the JAR
tool, you should see a simple default
manifest file.

Manifest-Version: 1.0

Created-By:1.4.0-beta(Sun

Microsystems Inc.)

This trivial manifest file lets me know
I’m working with a version 1.0 manifest
file. Right now this is the only defined
manifest file format. The next line tells
me this JAR was created by the JAR utili-
ty in the Sun Java 1.4 beta SDK. If the
manifest file was created, for example,
by the Ant build tool, then you might
expect to see something like “Created-
By: Ant 1.2”. When creating your own
manifest files, put in text that’s relevant
to your own project.

The Basic Format
The format of the manifest is simple.

Each line of the manifest file is a name-
value pair. The attribute name is first,
followed by a colon, and then the attri-
bute value. Lines should be limited to 72
characters, but if you need more than
that, you can continue a value on the
next line by starting the line with a
space. Any line that begins with a space
is considered a continuation of the pre-
vious line.

All the attributes at the top of the file
are global. You can also apply an attri-

bute to a specific class or package. I’ll
show examples of that later.

Inserting the Manifest
To add a manifest file to a JAR file, the

“m” option is used and the filename of
manifest file is passed to the JAR pro-
gram after the name of the JAR file.

jar cvfm myapplication.jar myap-

plication.mf -C classdir .

If you use the Ant build tool, the man-
ifest can be specified by adding a mani-
fest attribute to the JAR specification:

<target name="jar">

<jar jarfile

="myapplication.jar"

manifest="myapplica-

tion.mf">

<fileset dir="classdir"

includes="**/*.class"

/>

</jar>

</target>

A Java Executable
Now that you’ve had a small taste

of the manifest, let’s step back and
look at a few deployment issues that
can be greatly simplified by the mani-
fest. To launch a standard Java appli-
cation, I need to invoke a Java Virtual
Machine and include the application
JAR in the classpath, then specify the
class I want to invoke. Let’s assume
again that the JAR is myapplication.jar
and the application main class is
com.example.myapp.MyAppMain.
The application start script will need
to invoke:

java -classpath myapplication.jar

com.example.myapp.MyAppMain

WRITTEN BY
NORMAN

RICHARDS

Releasing Java applications can be a real challenge. Fortunately, Java provides a rich
set of features for packaging and deploying applications that can simplify the release
process significantly.

Simplify the packaging and releasing
of Java applicationsJ2

SE
H

om
e

J2
E

E
J2

M
E

AUTHOR BIO
Norman Richards

works at Commerce
One Labs, the

research division of
Commerce One.

95MAY 2002

Java COM

SYS-CON Industry
Newsletters

www.sys-con.com

Java COM

96 MAY 2002

While this isn’t an overwhelmingly complicated task, it’s awkward
specifying the main class external to the JAR file. If I were writing a stand-
alone application, I’d expect the application to know the class I want to
start execution at. I can specify this with the Main-Class attribute in our
manifest.

Manifest-Version: 1.0

Created-By: JDJ example

Main-Class: com.example.myapp.MyAppMain

Now, if I add the manifest to our JAR, I can invoke our Java application
much more simply.

java -jar myapplication.jar

This is definitely a much simpler and less error-prone way to launch
an application.

Managing JAR Dependencies
This first step is good, but very few Java applications can be distrib-

uted as a single JAR. Typically, I need support libraries. Suppose my
application is using Sun’s Javamail classes and I need to include activa-
tion.jar and mail.jar in my classpath. My previously simple Java -jar com-
mand becomes a bit less pleasant.

java -classpath mail.jar:activation.jar -jar myapplication.jar

Matters are further complicated by the fact that the classpath specifi-
cation varies between operating systems. On Unix, classpath elements
are separated by a colon, but on Windows, classpath elements are sepa-
rated by a semicolon.

Again, the manifest file provides a way for me to manage this com-
plexity. What I really have is a JAR dependency. myapplication.jar now
depends on mail.jar and activation.jar. Anytime I use myapplication.jar
I’ll want those two JARs. I can express this dependency in the myapplica-
tion.jar manifest.

Manifest-Version: 1.0

Created-By: JDJ example

Main-Class: com.example.myapp.MyAppMain

Class-Path: mail.jar activation.jar

Now I can once again invoke the application in the original simple
manner.

java -jar myapplication.jar

Let’s look more closely at how this works. The Class-Path attri-
bute is a space-separated list of relative URLs pointing to JAR files
that the current JAR references. Keep in mind that I need to escape
spaces and special characters as I would in a URL (a space would be
escaped as “%20”). I also need to use a forward slash (“/”) as the
directory separator, regardless of the platform preference. Also note
that the URL reference is indeed relative. I couldn’t specify
C:/some.jar or/usr/local/java/lib/someother.jar as a dependency if
my intent is to root my file search path anywhere other than the cur-
rent directory.

Also, note that when I install the application I still need to make
sure that mail.jar and activation.jar are in the same directory as myap-
plication.jar, otherwise the application will fail to find the JARs I need.

As an alternative, some developers prefer to place support JARs in a sub-
directory. For example, suppose that next to the application JAR is a direc-
tory ext that contains the support libraries. I could use a manifest like this:

J2
SE

H
om

e
J2

E
E

J2
M

E
A P P R E L E A S E M A N A G E M E N T

97MAY 2002

Java COM

Simplex
Knowledge
Company

www.skc.com

Java COM

98 MAY 2002

Manifest-Version: 1.0

Created-By: JDJ example

Main-Class: com.example.myapp.MyAppMain

Class-Path: ext/mail.jar ext/activation.jar

Again, keep in mind that the classpath components need to be spec-
ified as if they were a relative URL component and were not using plat-
form-specific naming conventions.

Multiple Main Classes
It’s not uncommon for Java applications to provide multiple entry

points. Perhaps you have both a command-line and a GUI version of
your application, or perhaps a main application with several support
tools that share a lot of the same code base.

In this case, a good approach is to package all the common JARs into
a single application code JAR. Separate application JARs could be creat-
ed for each entry point, each containing a manifest file with a depen-
dency on the library JAR and a main-class entry that represents the entry
point. Depending on the development setup, you may find it simpler to
keep all the classes (including the front-end classes) in the library JAR or
to package the front-end classes only in their corresponding JAR. The lat-
ter is cleaner, but may be troublesome if you haven’t organized your
classes for easy separation.

The resulting application would look like the following: the lib JAR con-
tains the class files and the dependencies for those class files; the remaining
JARs are empty, minus the manifest, and depend only on the classes JAR.

Manifest for myapplicationlib.jar:

Manifest-Version: 1.0

Created-By: JDJ example

Class-Path: mail.jar activation.jar

Manifest for myappconsole.jar:

Manifest-Version: 1.0

Created-By: JDJ example

Class-Path: myapplicationlib.jar

Main-Class: com.example.myapp.MyAppMain

Manifest for myappadmin.jar:

Manifest-Version: 1.0

Created-By: JDJ example

Class-Path: myapplicationlib.jar

Main-Class: com.example.myapp.MyAdminTool

Package Versioning
After you’ve distributed code, a key issue in release management is

figuring out exactly what code you have. What version of the code is run-
ning now? What versions of the support libraries are you using? There are
a number of approaches to this problem, but the manifest file provides a
very elegant solution. In the manifest file, you can describe every pack-
age provided in the JAR file according to the Java versioning system.

Java is based on the principal of separating the specification of a tech-
nology from its implementation. A package’s specification defines what
the package is and the implementation defines who is providing the
implementation of the specification. The specification and implementa-
tion are described by a name, a version number, and a vendor. To get a

J2
SE

H
om

e
J2

E
E

J2
M

E

A P P R E L E A S E M A N A G E M E N T

PROPERTY VALUE

java.vm.specification.version 1.0

java.vm.specification.name Java Virtual Machine Specification

java.vm.specification.vendor Sun Microsystems Inc.

TABLE 1

PROPERTY VALUE

java.vm.specification.version 1.0

java.vm.specification.name Java Virtual Machine Specification

java.vm.specification.vendor Sun Microsystems Inc.

99MAY 2002

Java COM

Dynamic Buyer
Incorporated

www.ibm.com/small business/dynamicbuyer

Java COM

100 MAY 2002

feel for this information, let’s first look at a few JVM system properties
(queryable via java.lang.System.getProperty()).

Java first defines the version of the JVM specification being used (see
Table 1). This explains that the JVM I’m running is an implementation of
Sun’s JVM Specification 1.0. It doesn’t tell me who created the JVM, it just
states that the JVM conforms to a certain standard. To see implementa-
tion details, I have to look at the implementation properties. Table 2 is
from a Java 1.3 release from Sun.

Again, this states that the JVM is from Sun and is the HotSpot Client
JVM. The version is 1.3.0_04, which happens to correspond with the API
version number but is not formally related to it. The Java API specifica-

tion and implementation are also defined in system properties
("java.specification.version", "java.specification.name"), but since I’m
focusing on my own releases, not the JVM, I’ll show how to apply Java
versioning to the libraries.

In the manifest file, I can define both a specification and an imple-
mentation version for each package by declaring a named entity and
then adding specification and implementation attributes. These attri-
butes are:
• Specification-Title
• Specification-Version
• Specification-Vendor
• Implementation-Title
• Implementation-Version
• Implementation-Vendor

Specification information is useful primarily when providing a
library or programmatic interface to the outside world, or implement-
ing a programmatic interface defined by a standards body. However,
another candidate for specification information for an application
would be a design or requirements document, if your development
process calls for it.

Implementation attributes can be used to track the internal release
information. A common technique is to track internal build numbers in
the Implementation-Version field.

Let’s extend the manifest to include package information. Suppose
I’m releasing build 2002-03-05-A of version 2.4 of MyApp; I could repre-
sent this with the following manifest:

Manifest-Version: 1.0

Created-By: JDJ example

Class-Path: mail.jar activation.jar

Name: com/example/myapp/

Specification-Title: MyApp

Specification-Version: 2.4

Specification-Vendor: example.com

Implementation-Title: com.example.myapp

Implementation-Version: 2002-03-05-A

Implementation-Vendor: example.com

Remember to include a blank line between the main attributes sec-
tion and the entity attributes section and to use slashes, not dots, when
referring to packages and class-attribute sections. Think of this as refer-
ring to the name of the entity as it exists in the JAR file, not by the true
package or class names.

J2
SE

H
om

e
J2

E
E

J2
M

E

A P P R E L E A S E M A N A G E M E N T

TABLE 2

PROPERTY VALUE

java.vm.version 1.3.0_04

java.vm.name Java HotSpot(TM) Client VM

java.vm.vendor Sun Microsystems Inc.

Java COM

• Real-World Web Services: Is It Really XML's Killer App?

• Demystifying ebXML: A Plain-English Introduction

• Authentication, Authorization, and Auditing: Securing Web
Services

• Wireless: Enable Your WAP Projects for Web Services

• The Web Services Marketplace: An Overview of Tools, Engines,
and Servers

• Building Wireless Applications with Web Services

• How to Develop and Market Your Web Services

• Integrating XML in a Web Services Environment

• Real-World UDDI

• WSDL: Definitions and Network Endpoints

• Implementing SOAP-Compliant Apps

• Deploying EJBs in a Web Services
Environment

• Swing-Compliant Web Services

• and much, much more!

*Offer subject to change without notice

102 MAY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

norman.richards@commerceone.com

void logPackage()
{

Package package =
Package.getPackage("com.example.myapp");

if (package == null) {
System.out.println("com.example.myapp not loaded");
return;

}
System.out.println("com.example.myapp version " +

package.getSpecificationVersion() +
" build #" +
package.getImplementationVersion());

}

Listing 1

Java COM

A P P R E L E A S E M A N A G E M E N T

It’s quite likely that the JAR file will provide multiple packages. They
can all be specified in the manifest. Just remember to leave a blank line
between each section.

Querying Package Version
Releasing package information in the manifest is good, but ideally I’d

like to be able to access package information at runtime. Java provides
convenient access to the manifest package attributes via the
java.lang.Package class. There are three basic ways to get a package
object.
1. Package.getPackages(): Returns a list of all the packages currently

defined by the system
2. Package.getPackage(String packagename): Returns a package by

name
3. Class.getPackage(): Returns the package object for a given class

Using these functions, I can provide dynamic logging of package ver-
sion information (see Listing 1).

It’s very important to note that if no classes have been loaded from a
given package by the class loader, then there will be no Package object
available for the package. That’s why I test for null at the beginning. This
is important because you may be tempted to log all the packages in the
system at startup. However, it’s unlikely that all the relevant packages in
the application will have been loaded yet. Still, package version informa-
tion can be quite valuable (particularly for support purposes) so it’s a
good idea to make this information readily available.

Summary
The manifest file provides a wealth of useful metainformation and

greatly simplifies the task of packaging and releasing Java applications.
We’ve seen how to package classes in JAR files, how to track dependen-
cies between JARs, how to turn JARs into executables, and how to track
the versions of packages in classes. These are the basic tools for applica-
tion release management in the Java platform. Making proper use of this
functionality can greatly simplify this task.

Manifest Tips
• Always start a manifest with the Manifest-Version attribute.
• Limit lines to 72 characters; if longer lines are needed, use line continuations.
• Make sure the last line has a carriage return at the end; otherwise the

line will be ignored.
• If a Class-Path entry crosses directories, use “/” as the directory sepa-

rator, regardless of the platform.
• Separate main attributes from entity attribute sections by a blank line.
• Use slashes, not dots, to delimit package and class entities.
• Class entities should end with .class and package entities should end

with a slash (“/”).

103MAY 2002

Java COM

JDJ Store
www.jdjstore.com

Exclusive: Excerpts from JavaDevelopersJournal.com

WIRELESS AND WEB SERVICES COMBINE TO KEEP
JAVAONE JIVING…AND JAVA THRIVING

E
xc

lu
si

ve

J2
SE

H
om

e
J2

E
E

J2
M

E

“WHAT WERE YOUR OVERALL IMPRESSIONS OF JAVAONE
2002?” we asked a select handful of the movers and shakers of
contemporary enterprise Java-based computing

(April 12, 2002) – It’s a cliché that, in a difficult economy, it is
business leaders and business leaders alone that stand out. But
it’s a cliché that was shown to be at least partly valid by what was
on display – and who was displaying it – at JavaOne 2002, which
took place at the end of March in San Francisco’s huge Moscone
Center....

JavaOne 2002 Was “Amazing,” Says Gosling
James Gosling, the “father” and co-creator of Java and never one
to mince words, was unequivocally jazzed by the whole event:
“It was amazing,” he says, simply.

“Despite the economy and awkward scheduling,” Gosling con-
tinues, “attendance was strong, and everyone I met was charged
up. I didn’t encounter anything hat felt like the vapor of past
years: just solid companies with actual revenue.”

Was there anything that stuck out as being a new killer app of
Javaland? “The technology has become so broad that it’s hard to
‘pick a winner’ – in a sense, they all are,” Gosling replies. “To me,
it’s this broadness that is the real exciting feature these days: the
whole end-to-end architecture is there.”

But once a geek always a geek, and no one who knows Gosling
should be the least surprised to hear him confess: “Then, of
course, there were those cases at the entrance to the exhibit
halls filled with very cool, very lovely gadgets. Major objects of
geek lust!”

Web Services and Wireless Are the New Hot Areas
Bill Roth, Sun’s group marketing manager, is completely can-
did about the realities of the present economic turbulence.

“My expectations were pretty low,” he says, “ given the econ-
omy. Most shows have been at about 50% capacity.” But he
was impressed, he explains, with the scope and results of
JavaOne.

“I was impressed with traffic…which underscores two impor-
tant items: 1) there are a sufficient number of new folks coming
into the Java world to sustain and grow the community, and 2)
there is sufficient new content, primarily in the area of Web ser-
vices and wireless to hold developers’ interest in the long term.”
“While I remain a huge fan of J2EE,” Roth concludes, “I am utter-
ly amazed by the non-PC devices running Java.”

Sun’s Own EVP Is “Blown Away”
Patricia C. Sueltz, executive vice president of Sun’s Software
Systems Group, is as enthusiastic about JavaOne 2002 as
James Gosling is. Her way of explaining it is a little different,
though, and makes reference to Java processes as much as to
products.

“First, I was blown away by all the different ways that people are
using Java and what a huge success it is,” she says. “Java is clear-
ly the de facto standard for server-side development. I continue
to be amazed at how adoption keeps growing and more and
more applications keep appearing that enable enterprise and
legacy data to be accessed with Java. It’s really a testament to
what a community working together, like the Java Community
Process, can accomplish.

“Second,” Sueltz continues, “the momentum of Java technology
in the wireless space is really strong. Large wireless carriers
around the world realize that interactive applications create a
whole new revenue opportunity and that Java provides an inde-
pendent, standards-based application platform for them. This
combined with the exciting range of phones and mobile devices
being offered or on the way will drive Java technology’s accept-
ance to unprecedented levels.”

by JDJ News Desk

RECEIVE $15
0

DISCOUNT OFF F
ULL C

ONFERENCE

WEB SERVICES EDGE REGISTRATION

Paolini and Williamson Praise Return to Basics
George Paolini, chief marketing officer of Zaplet, Inc., is in no
doubt: “All-in-all a great show,” he affirms. “I saw a focus on back
to basics, and that’s a strong reflection of Java’s role in the enter-
prise, which has been clearly established.”

Alan Williamson, who as editor-in-chief of Java Developer’s
Journal has become famous for calling for just such a back-to-
basics shift for the past year, agrees.

“This JavaOne was a great one as usual,” enthuses Williamson.
“Of all the JavaOnes I can remember,” he continues, “this was
one of the ones that makes this particular event so great.” While
the overall foot traffic may have been down significantly, he

adds, there was “time to talk to people and find out what was
happening in the real world with Java.”

The major points that Williamson draws attention to are first the
fact that people seemed to have given up on always-on wireless.
“Where in previous years,” he says, “companies were building
software assuming that a network would be there that was
always on, this hasn’t transpired, so a lot of those same compa-
nies are now concentrating on synching software to make use of
the network when and if it’s online.”

Second, Williamson noticed that while in previous years,
“software tool vendors followed the vogue and produced a
whole raft of UML tools, intimidating all those who didn’t use
them, and now the shift has moved to performance and analy-
sis tools.”

“Respectable”Web Services Here We Come?
Williamson’s last point struck a chord, not surprisingly, with the
editor-in-chief of Web Services Journal, Sean Rhody, who
declares that it was clear to him at JavaOne 2002 that “the first

phase of Web services, the definition phase, is drawing to a
close.”

“Without exception,” he continues, “vendors had already pro-
vided the back-end connectivity within their products to
allow them to expose a Web service interface.” As Rhody suc-
cinctly puts it, so far as Web services is concerned, “The battle
for acceptance is over. The battle for respectability has
begun.”

It is a battle that is next joined June 24-27 at Web Services Edge
2002 (East) International Web Services, Java, and XML
Conference & Expo at the Jacob Javits Convention Center in New
York City (www.sys-con.com/webservicesedge2002east).

Last Word to Scott McNealy
No wrap-up of JavaOne would be complete without some
kind of 65,000-foot view from Sun’s highest flier, chief execu-
tive Scott McNealy. Asked by JDJ what his strongest impres-
sions of the week were, from a Java industry point of view, he
cuts straight to the chase: “To me, it all comes back to open –
and open means interoperability. That’s the promise of Java,
and we all have to do our best to keep that promise, year after
year.”

“Every chance I get,” McNealy continues, “I urge developers to
test their applications for compatibility on at least two app
servers to make sure they haven’t picked up any proprietary
extensions in the tools they use. Incompatibility is the wrong
answer. It limits the value of your application and the size of
your market.”

Now who in Javaland could possibly quarrel with that?

To read the full text, go to www.sys-con.com/java/

Java is clearly the de facto standard for server-side development....
adoption keeps growing and more and more applications keep appearing

that enable enterprise and legacy data to be accessed with Java

“
”

SOLD OUT!

SOLD OUT!

AIMED AT THE JAVA DEVELOPER COMMUNITY AND DESIGNED TO EQUIP ATTENDEES WITH ALL THE TOOLS AND INFORMATION TO BEGIN IMMEDIATELY
CREATING, DEPLOYING, AND USING WEB SERVICES.

EXPERT PRACTITIONERS TAKING AN APPLIED APPROACH WILL PRESENT TOPICS INCLUDING BASE TECHNOLOGIES SUCH AS SOAP, WSDL, UDDI, AND XML,
AND MORE ADVANCED ISSUES SUCH AS SECURITY, EXPOSING LEGACY SYSTEMS, AND REMOTE REFERENCES.

Jump-start your Web Services knowledge.
Get ready for Web Services Edge East and West!

PRESENTERS...
Anne Thomas Manes, Systinet CTO, is a widely recognized industry
expert who has published extensively on Web Services and service-based comput-
ing. She is a participant on standards development efforts at JCP, W3C, and UDDI,
and was recently listed among the Power 100 IT Leaders by Enterprise Systems,
which praised her “uncanny ability to apply technology to create new solutions.”

Zdenek Svoboda is a Lead Architect for Systinet’s WASP Web
Services platform and has worked for various companies designing and developing
Java and XML-based products.

BOSTON, MA (Boston Marriott Newton)JANUARY 29
WASHINGTON, DC (Tysons Corner Marriott)FEBRUARY 26
NEW YORK, NY (Doubletree Guest Suites).....................APRIL 19
SAN FRANCISCO, CA (Marriott San Francisco)MAY 13
REGISTER WITH A COLLEAGUE AND SAVE 15% OFF THE $495 REGISTRATION FEE.

Register at www.sys-con.com or Call 201 802-3069
EXCLUSIVELY SPONSORED BY

SOLD OUT!

SOLD OUT!

NEW DATE!

L E T T E R S T O T H E E D I T O R

Java COM

106 MAY 2002

Going IDE-less

It was interesting to read in Alan
Williamson’s editorial “Java 1.4 and the

Rest!” (Vol. 7, issue 3) that he has foregone
the IDE and is going it alone with the JDK.
My partner and I started out with JBuilder,
and after a couple of years decided to junk
it and use UltraEdit and the JDKs. We rea-
soned that JBuilder was keeping us away
from the language and was a barrier to
using third-party code and tutorials. We’ve
been really happy with the results (it’s been
a year) and feel that we have grown in the
language enormously. I get a lot of strange
looks (especially from software managers
who see IDEs as a magic bullet for the “fear
of programming” problem) when I tell
people that I don’t use an IDE. It’s nice to
hear that others also aren’t using it.

Frank Cooley
ftsoft@computer.org

This is a great editorial. I
can relate directly to

what Alan Williamson is
talking about regarding
quality Java architects and
also VisualAge.

The blind leading the
blind...also the blind teach-
ing the blind (offshore tech
schools). And I don’t even
want to start on my dislike
for VisualAge...I would
never finish this e-mail.

Although I do enjoy using
IDEs such as JBuilder – features such as
having a dropdown method list when you
type a period after an object are great. I
have to admit, there are some definite
advantages over the “notepad” IDE.

I’ve been contracting in the industry
for some time and have seen
various hiring tactics. For
example, one company
searching for a lead archi-
tect set their entire focus on
finding someone who was a
guru in VisualAge,
WebSphere, and Unix while
placing minimal (close to
zero) focus on actual archi-
tecture experience and tech-
niques. That’s like giving
someone a job to write arti-
cles for a periodical based
solely on the fact that that
person knows the “ins and

the outs” of Microsoft Word.

DJ
djtatar@hotmail.com

Assembly Line Development

Ithink the answer Keith Brown
is looking for in his editorial

“The IDEal Way Forward for
Software Development” (Vol.
7, issue 3) is nothing new at
all, it happens to every pro-
fession. Programming is
going through the same
transition that other pro-
fessions have gone
through in the past.
Craftsman are only a temporary
phenomenon in any profession. How
often do you visit your local blacksmith
when you need a new part for your car or
visit the carpenter to turn a new leg for a
broken chair. Blacksmiths and carpenters
don’t exist in this capacity anymore. Cars
are stamped out by other machines and a
whole new chair, assembly-line produced,

is cheaper than the
cost of fixing your bro-
ken one.

Software develop-
ment is making the
same transition.
Craftsman are simply
too expensive; society
can’t afford to have
them building every-
day items. As soon as a
profession is well-
enough understood,
engineers will find a
way for a machine to

replace the craftsman. “Hard-core” devel-
opers do exist: they’re building special-
ized software. But the bulk of the pro-
grammers today are piecing
together COTS software and
painting screens with IDEs.
It’s simply the profession
transitioning from crafts-
manship to assembly line.

Scott Wills
scottw6293@aol.com

Preferences API Unfairly
Categorized

Richard Deadman’s arti-
cle “An API Developer’s

Primer” (Vol. 7, issue 3) con-
tains many good points, but
I believe the author let his biases get the
better of him on one point. The article
purports to divide APIs into three cate-
gories: “dead,” “wounded,” and “victors.”

For the most part his taxonomy is
fair: he picked APIs that have been
around for a few years and categorized

them based on the success
they’ve achieved.

There is one glaring exception. In the
“wounded” category, he names the
Preferences API. But this API is brand new!
It did not become final until February
2002, as part of the Java 2 Standard Edition
Release 1.4. It is simply unknown whether
this API will be a dismal failure, a brilliant
success, or something in between. In cate-
gorizing it as wounded, Deadman may be
stating his hopes or his predictions, but he
is certainly not stating the facts.

Deadman is entitled to his opinion,
but it is worth noting that other com-
mentators don’t share it. For example,
David Flanagan lists this API as one of
the “Top Ten Cool New Features of Java
2SE 1.4” (www.onjava.com/pub/a/onja-
va/2002/03/06/topten.html).

Time will tell whether the Preferences
API succeeds or fails, but responsible
journalism dictates that its failure not be
announced prematurely.

Josh Bloch
joshua.bloch@sun.com

Josh,first of all let me
thank you for your e-mail.
You’re a legend in Java cir-
cles,and before now,we
haven’t had the opportunity
to cross paths.It’s a shame
the first time is a complaint
about one of our articles.

Richard Deadman
was indeed expressing his
own views.As it was the
sort of piece that had to

do this,we allowed him some breadth.
Although it is fair to note that he did categorize
the API as “wounded”as opposed to “dead,”
which means he felt it lacking in some respects,
thus giving it one down from the “victor”status.

Alan Williamson

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

107MAY 2002

Java COM

SYS-CON
Subscription Offer

www.sys-con.com/suboffer.cfm

WebLogic
Developer’s

Journal
www.sys-con.com/weblogic

Java COM

108 MAY 2002

�SavaJe Attains J2SE Compliance for
SavaJe OS
(Chelmsford, MA) – SavaJe Technologies
has announced that it is the first Java
licensee to provide a commercially avail-
able J2SE-certified operating system for
handheld and wireless devices, having
passed all the official Sun Compatibility
Test Suite (CTS) tests required for J2SE
compliance.
www.savaje.com

�ILOG Releases JRules 4.0
(Mountain View, CA) – ILOG, a supplier
of software components, has announced
the immediate availability of ILOG
JRules 4.0, an enterprise-class business
rule engine that brings customizable
and comprehensive business rule man-
agement to enterprises.

Features include the JRules
Business Rule Repository, a centralized
location for storing business rules and
all related information, and event man-
agement features that allow users to
create rules for detecting complex
time-oriented patterns within event
flows.
www.ilog.com

�Borland Debuts Optimizeit Suite and
JDataStore 5
(San Francisco) – Borland Software
Corporation announced the expansion
of the Borland Software Platform for Java
with the debut of Borland Optimizeit
Suite and JDataStore 5 at the JavaOne
Conference.

Optimizeit Suite is a performance
assurance solution for robust applica-
tion development that integrates with
development and deployment environ-
ments.
www.borland.com

�Oracle Combines Java-Enabled Mobile
Devices and the Enterprise
(San Francisco) – Oracle Corp. has
announced the immediate availability of
the Oracle9i JDeveloper J2ME Add-In
and the Oracle9i Application Server
(Oracle9iAS) J2ME Developer Kit. Java
developers can build and deploy mobile
enterprise applications that take advan-
tage of the J2ME standard. Both devel-
opment tools are currently available for
a free download from Oracle’s online
developer community, Oracle
Technology Network (OTN).
www.oracle.com

�TogetherSoft Delivers Together
ControlCenter 6.0
(Raleigh, NC) – TogetherSoft Corporation
has announced the availability of
Together ControlCenter 6.0 for applica-
tion development. Key enhancements
include a new UI builder, improved text
editor, new refactorings, and full J2EE

1.3 certification includ-
ing support for EJB 2.0,
Web services support,
and a new XML editor.
www.togethersoft.com

�LOOX Releases
JLOOXLayout 3.0
(San Francisco) –
LOOX Software, a
subsidiary of
eNGENUITY
Technologies, has
released a new ver-

sion of its Java-based

visualization toolkit.
JLOOXLayout 3.0
includes three new lay-
out algorithms for dis-
playing data with pre-

existing classes in addi-
tion to the Layout Editor

and Layout Manager.
www.loox.com
www.engenuitytech.com

�Sitraka JClass DesktopViews 6.0 and
ServerViews 2.1
(San Francisco) – Sitraka has announced
the release of Sitraka JClass
DesktopViews 6.0, formerly known as
JClass Enterprise Suite, now supporting
Java 2 SDK version 1.4.

JClass DesktopViews provides a
range of GUI functionality including 2D
and 3D charting, layout and reporting,
GUI enhancements, JAR optimization,
hierarchical data display, tables and
grids, data connectivity, and data input
and validation.

In addition, JClass ServerViews 2.1
has a set of 100% Java server-side com-
ponents and includes JClass
ServerChart 2.1 and JClass
ServerReport 2.1.
www.sitraka.com

�JTurbo 3.0 Released
(San Francisco) – New Atlanta
Communications has announced the
availability of JTurbo 3.0, the newest
release of its Type 4 JDBC Driver for
Microsoft SQL Server, which implements
the JDBC 3.0 specification.

Among the added or improved fea-
tures for JTurbo 3.0 are savepoint sup-
port, statement pooling support,
improved connection pool configura-
tion, retrieval of parameter metadata,
and retrieval of autogenerated keys.
www.newatlanta.com

RATIONAL’S NEW ADAPTIVE
TEST PLAYBACK TECHNOLOGY

(San Francisco) – Rational’s new Adaptive Test
Playback technology will provide the industry with
self-correcting object recognition, reducing the
need to update existing tests throughout the appli-
cation’s life cycle.

Rational’s Adaptive Test Playback technology can
automatically find target objects without the need
for human intervention and time-consuming object
remapping.
www.rational.com/testjava

>

N
ew

s

J2
SE

H
om

e
J2

E
E

J2
M

E

JDJ’S APRIL EDITORIAL
RALLIES JAVA CAMP

(Montvale, NJ) – SYS-CON Media has published a
special editorial, written by JDJ’s editor-in-chief
Alan Williamson, on its Java Developer’s Journal
Web site. It focuses on the .NET versus J2EE ques-
tion surrounding the i-technology marketplace. The
editorial entitled “There May Be Trouble Ahead…”
sheds light on the hottest discussion topic of the
year (www.sys-con.com/java/article.cfm?id=1401).

This editorial was read by more than 100,000
readers within two hours after it appeared on SYS-
CON’s Web site, and over 500 readers responded
within the first two hours of its publication. It was
also instantly picked up and simultaneously pub-
lished on the Slashdot.org and JavaLobby.org Web
sites.
www.sys-con.com

>

JAVANEWS>

109MAY 2002

Java COM

EnginData
Research

www.engindata.com

WebSphere
Developer’s

Journal
www.webspheredevelopersjournal.com

Java COM

110 MAY 2002

JavaDevelopersJournal.com
Visit www.javadevelopersjournal.com and learn

about the latest news and events from the world’s
leading Java resource. Know what’s happening in the
industry, minute by minute, and stay ahead of the
competition.

SYS-CON Radio at JavaOne
Listen to host Alan Williamson and other JDJ edi-

tors as they interview the industry’s CEOs, CTOs, and
other top management. Tune to www.sys-con.com/
java/javaone2002.cfm and hear discussions on tech-
nology, programming, standards, and more with the
Java world’s top minds.

JDJEdge 2002 Conference and Expo
Register Now for the World’s Largest Independent
Java Event!

JDJEdge 2002, SYS-CON’s third annual Java-
focused show, will be held June 24–27 at the Jacob
Javits Convention Center along with Web Services
Edge 2002 and XMLEdge 2002. The shows will be colo-
cated with TechXNY/PC Expo.

Participate with fellow developers, architects, IT
management, and other i-technology professionals in
Java Technology Fast Path Certification classes, panel
discussions, and three full-day Java classes. Topics
include “Java 1.4: What’s New,” “Building Truly
Portable J2EE Applications,” “Java Tools for Extreme
Programming,” and “.NET vs J2EE.”

Register online at www.sys-con.com/jdjedge2002
east/registernew.cfm

2002 Readers’ Choice Awards
Make your opinion count. Vote today for the Java

Developer’s Journal Readers’ Choice Awards, which
have earned the reputation as the most respected
industry awards program of its kind. Known as the
“Oscars of the Software Industry,” this year’s awards
feature an expanded list of product categories and
other additions that will make the fifth annual
Readers’ Choice Awards the best so far!

Call for Papers
SYS-CON Events, Inc., invites proposals for speak-

er consideration at Web Services Edge 2002 West,
October 1–3, 2002, at the San Jose Convention Center
in San Jose, CA. Ideal candidates are Java developers,
Web Services developers, XML developers, .NET
developers, industry analysts, IT/IS management,
and other industry experts who have first-hand expe-
rience in the development or implementation of Web
services, Java applications, or XML-based technolo-
gies. If you have something substantive, challenging,
and original to offer, we encourage you to submit a
proposal, and become part of the conference faculty
for the i-technology event of the year! Deadline is May
15, 2002.

What’s Online... May 2002

Java COM

O
nl

in
e

J2
SE

H
om

e
J2

E
E

J2
M

E

WHIZLABS
WebSphere@Whiz Certification Simulator

3 Mock Tests (159 Questions). It comes with a test
engine and a question bank of 159 questions on the lat-
est pattern of the IBM WebSphere Certification Exam. It
also consists of a diagnostic test which will help you
know your strengths and weaknesses so you can plan
your preparation accordingly.

W W W . J D J S T O R E . C O M OFFERS SUBJECT TO CHANGE WITHOUT NOTICE

$39.95

GUARANTEED BEST PRICES

FOR ALL YOUR
WEB SERVICES

SOFTWARE NEEDS
MICROSOFT

Visual Studio .NET Enterprise Architect

Visual Studio .NET provides developers with the most
productive tool for building next-generation applications
for Microsoft Windows® and the Web. Visual Studio
.NET Enterprise Architect (VSEA) builds on the power of
Visual Studio .NET Enterprise Developer by including
additional capabilities for designing, specifying, and communicating applica-
tion architecture and functionality. It enables software
architects and senior developers to provide architectural guidance
and share best practices across the development team.

$2,238.99
MICROSOFT

Visual Studio .NET Enterprise Developer

With Visual Studio .NET Enterprise Developer,
developers can securely version and share their
source code, share best practices, target scalable
.NET Enterprise Servers, choose from a wide
range of third-party tools and technologies, and
easily tune the performance of their Web applications and Web
Services through the extensive performance-testing tools in Visual
Studio .NET.

$1,629.99

SILVERSTREAM
Extend Application Server

SilverStream eXtend is the first comprehensive,
real-world development environment for creating
Web Services and J2EE applications. The seam-
less integration of our proven eBusiness engines
and designers gives you the benefits of XML-based, enterprise-wide
integration and the power to create, assemble and deploy service-ori-
ented applications.

$495.00

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA
BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

BUY THOUSANDS
0F PRODUCTS AT

GUARANTEED
LOWEST PRICES!

Developer Edition (5 User)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

W
eb

Services journal

Readers’
CHOICE
 AWARD

WSJ
World class

 AWARD

N-ARY
n-ary Ticket System

The Ticket System is a Web-based tool that enables you to
log & track important information. The system is extremely
flexible and simple to use and can be utilized in numerous
different situations. It is a completely 'hands off' system.
This means that you do not have to waste time and
resources by continuously checking a Web page for
updates.

$145.00

MAINSTAY
JustEdit Plus 1.0

JustEdit Plus is a Java applet offering manual
and automatic editing of Web pages anytime,
anywhere, using only a Web browser. Manual
editing of any target Web page is done in the
applet's HTML editing window.

$124.00

$89 99
12 Issues for

SAVE 16% OFF

• Exclusive feature articles • Interviews with the hottest names in ColdFusion
• Latest CFDJ product reviews • Code examples you can use in your applica-

tions • CFDJ tips and techniques

That’s a savings of $1789 off the annual newsstand rate. Visit our site at
www.sys-con.com/coldfusion/ or call 1-800-513-7111 and subscribe today!

SAVE 17% OFF

• New PowerBuilder features • Tips, tricks, and techniques in
server-side programming • DB programming techniques • Tips on creating live

PowerBuilder sites • Product reviews • Display ads for the best add-on products

That’s a savings of $31off the annual newsstand rate. Visit our site at
www.sys-con.com/pbdj/ or call 1-800-513-7111 and subscribe today!

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

OFFER SUBJECT TO CHANGE WITHOUT NOTICE

$149 99
12 Issues for

Java COMJava COM

112 MAY 2002

Women’s Work

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

Competing in the high-tech world

AUTHOR BIOS
Bill Baloglu is a

principal at
ObjectFocus

(www. ObjectFocus
.com), a Java staffing
firm in Silicon Valley.

Bill has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and
a principal at

ObjectFocus. His prior
position was at

Renaissance
Worldwide, where he

held several senior
management positions

in the firm’s Silicon
Valley operations.

We spoke to three female engineers
with 35 years of combined experience
working in the trenches of high tech.
Each woman has had different experi-
ences and faced numerous challenges.
But they all agree that the key differ-
ence between male and female engi-
neers is not what they do, but how they
do it.

Patty W.’s 18 years of industry experi-
ence includes writing commodity trad-
ing software and Java Internet security,
and working with operating system
internals. In her experience, the indus-
try is competitive for men, but for
women it’s even harder. However, she
believes men’s culture and upbringing
prepares them for it.

Patty has been the sole woman in
many groups. “I’ve felt like I had to
work harder to get the job,” she says.
“And work five times as hard to get rec-
ognized. On one contract, a man with
10 years less experience was given the
more challenging piece of the job.”

Although she’s been the senior engi-
neer in many groups, Patty notes that
male engineers are less likely to come to
her with questions. “Even when there’s
another woman in the group, she tends
to compete with me because she thinks
she’s being compared with the other
woman.”

Since 1995 Grace’s positions have
progressed from Web application engi-
neer to senior engineer to engineering
manager. A year and a half ago she made
the transition to technical marketing
manager, developing demo applications
and giving product presentations.

Grace cites the different communi-
cation styles of men and women as a key
challenge. “Women tend to be consen-

sus builders, wanting the team to get
along well,” she says. “The typical male
engineer wants to win the argument. In
design meetings, whoever can yell the
loudest or argue their point best usually
wins.”

“In that environment you can’t try to
build consensus, so I’ve had to become
more aggressive in arguing my points,”
she says, noting that less outgoing male
engineers also have difficulty prevailing
in such meetings.

Grace traces the lack of female engi-
neers to the way that math and science
classes are traditionally taught. “In high
school and college almost all my math
and science teachers were male,” she
says. “They taught courses in a direct,
fact-based way.”

“Men are more likely to memorize
facts; women focus more on how will
this work in the real world, for the
greater good,” she says. “I was a tomboy,
which helped me in class and to be more
competitive in jobs.”

Sufie S. considers herself fortunate
that she hasn’t faced many obstacles as a
woman in a man’s world. Her BS and MS
degrees in computer science and a
background in object-oriented design
have helped her to move from developer
to senior software engineer in her 10-
year career.

Balancing her personal and profes-
sional lives is a challenge for this
working mother of a four-year-old
daughter. She’d like to see an engi-
neer’s performance measured less by
the number of hours worked than by
total productivity.

“In the start-up world environment,
people who come in late and work late
are perceived as working harder than

someone who comes in early and leaves
early,” she says.

“Good engineers are somewhat pun-
ished in this industry,” she says. “When
you get your work done on time with no
problems, you’re less recognized than
the person who comes in and fixes the
bugs at the last minute. That’s who
becomes the hero of the project.”

Sufie would like to see more compa-
nies offer telecommuting opportunities,
which could help both male and female
engineers strike a healthier balance
between their personal and professional
lives.

“As a contractor I’ve done two very
successful projects from home,” she
says. “But most companies don’t have
formal telecommuting policies, so it’s
hard to get approval for it.”

Even if companies make such policy
changes, they may come too late for
many women in the industry. “I’ve been
hoping for a change since I’ve been in
the industry,” says Patty, who reads daily
messages on the women in technology,
Systers list serv (www.systers.org).

“A lot of women are jumping ship
because it’s so hard to get the respect
they deserve,” she observes. “Many of
them are going into teaching or non-
profit work. These jobs don’t pay as well,
but they’re not as competitive.”

Although she’s not optimistic about
the current state of affairs for women in
high tech, Patty does have a vision for a
brighter future. “If women could get
together and start their own company
with a more nurturing environment,
you could have a very productive com-
pany.”

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

This month we focus on women in the engineering world. In this competitive,
male-dominated world, female engineers face a variety of challenges. Many of these
challenges have less to do with getting the job done than with getting hired, communi-
cating with their male counterparts, and getting recognized for the work they do.

Next Month
Document Printing in Java

Keith G. Gauthier shares his simplified process
for printing Java documents.

Interfacing to AIM with Java
Jeff Heaton shows how to create a reusable class

that allows access to America Online’s (AOL) Instant
Messenger network.

Hello World! in 71 Bytes
Norman Richards explains how he used Java

class files and the Java Virtual Machine to create a
small Java “Hello World!” program.

Using the Java Native Interface Productively
Andrew J. Chalk addresses the problem of using

the JNI in a production situation and presents a set
of techniques that simplify most of the repetitive
tasks of passing information to the native code and
getting it back into your Java program.

Broken Windows in the Java World
Small disorders can lead to larger ones, and per-

haps even to project cancellations and firings. Joe
Xu shares a practical approach to identifying and
fixing broken Java windows.

ADVERTISERINDEX
ADVERTISER URL PHONE PAGE

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discre-
tion includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Actuate Corporation www.actuate.com/info/jbjad.asp 800-884-8665 55

Addison-Wesley 37

Altova www.altova.com 31

AltoWeb www.altoweb.com 35

AppDev Training Company www.appdev.com/promo/MG00052 800-578-2062 72

Apple Computer, Inc. www.apple.com/macosx 1-800-MY-APPLE 4-5

Ashnasoft Corporation www.ashnasoft.com 71

BEA www.bea.com/download 6

Borland Software Corp. www.borland.com/new/optimizeit/94000.html 79

Canoo Engineering AG www.canoo.com/ulc/ 41 61 228 94 44 25

Capella University www.capellauniversity.edu 1-888-CAPELLA 34

Compuware Corp. www.compuware.com/products/optimalj 800-468-6342 21

DataDirect Technologies www.datadirect-technologies.com 800-876-3101 33

Dice www.dice.com 41

Dynamic Buyer Incorporated www.ibm.com/smallbusiness/dynamicbuyer 99

EnginData Research www.engindata.com 109

ESRI www.esri.com/mapobjectsjava 39

eXcelon Corporation www.exln.com 800-962-9620 77

Fiorano Software www.fiorano.com/tifosi/freedownload.htm 800-663-3621 75

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 83

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

InstallShield Software Corp. www.installshield.com 847-240-9111 57

INT, Inc www.int.com 713-975-7434 32

Interland www.interland.com 1-866-270-5279 53

ITtoolbox www.Ittoolbox.com 87

JDJEdge Conference & Expo www.sys-con.com 91

JDJ Store www.jdjstore.com 201-802-3012 103

LOOX Software Inc. www.loox.com 800-684-LOOX 59

Metrowerks Corp. www.wireless-studio.com 11

Mongoose Technology www.portalstudio.com 49

Motorola www.motorola.com/developers/wireless 69

New Atlanta Communications www.newatlanta.com 73

Northwoods Software Corporation www.nwoods.com/go/ 800-434-9820 64

Oracle Corporation www.oracle.com/javacode 800-633-1072 19

Oracle Development Tools User Group www.odtug.com 910-452-7444 89

Parasoft Corporation www.parasoft.com/jdj5 888-305-0041 51

Pramati Technologies www.pramati.com 877-PRAMATI 81

Precise Software www.precise.com/jdj 800-310-4777 23

Prentice Hall PTR 45

QUALCOMM Incorporated http://brew.qualcomm.com/ZJD4 63

Quintessence Systems Limited www.in2j.com 61

Rational Software www.rational.com/offer/javacd2 43

SilverStream Software www.silverstream.com/coals 1-888-823-9700 29

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 17

Sitraka www.sitraka.com/jprobe/jdj 800-663-4723 67

Sitraka www.sitraka.com/performasure/jdj 800-663-4723 116

Simplex Knowledge Company www.skc.com 845-620-3700 97

Softwired, Inc. www.softwired-inc.com 41-14452370 85

Sonic Software www.sonicsoftware.com 800-989-3773 2

SpiritSoft www.spiritsoft.com/climber 27

Sprint PCS http://developer.sprintpcs.com 65

Sun Microsystems www.sun.com/forte 13

SYS-CON Industry Newsletters www.sys-con.com 201-802-3020 95

SYS-CON Subscription Offer www.sys-con.com/suboffer.cfm 107

TogetherSoft Corporation www.togethersoft.com/1/jd.jsp 919-833-5550 8

WebGain, Inc. www.webgain.com/toplink_create3.html 1-877-WebGain Ext.15858 115

WebLogic Developer's Journal www.sys-con.com/weblogic 800-513-7111 107

Web Services Edge Conference & Expo www.sys-con.com 93

Web Services Edge World Tour 2002 www.sys-con.com 201-802-3069 104-105

Web Services Journal www.sys-con.com 800-513-7111 101

WebSphere Developer's Journal www.webspheredevelopersjournal.com 800-513-7111 109

Zero G www.zerog.com 415-512-7771 3

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

138 MAY 2002

C U B I S T T H R E A D S

It seems ironic to me that this column
– gilding the edge of JDJ’s ultramodern
fabric – deals mostly with dusty memories
of my vanished youth. On the other hand,
I’ve heard that I should “write about what
I know,” so my options are extremely lim-
ited. Extremely. I mean, how many cab-
driving stories can a person take? (Many
would say that one is already too many.)

I suppose I could repeatedly spew
the first 50 digits of pi – which I hap-
pened to memorize as a teenaged
proto-geek – but that would be almost
as stupid as the original act of memo-
rizing it. I’ve always thought that those
brain cells I still use to hold pi might
have otherwise created some history-
making invention, or developed the
cure for the common cold, or at least
been happily sacrificed on the altar of
top-shelf single-malt Scotch whiskey.
Never too late to hope, though, I guess.

Uh-oh, here it comes, I feel a recita-
tion coming on:

“3.1415926535897932384626433832795028

8419716939937510”

<sigh> Boring, eh?

My sincerest hope, dear reader, is that
perhaps I can finally count my own self
among the “things I know,” and that you
will enjoy some of these vacuous recollec-
tions from the goofy amalgamation of
quarks that is my personal “main storage.”

And, by all means, if I’m so utterly irrele-
vant or patently offensive that you’re think-
ing about dropping your JDJ subscription,
please drop me a line so I can quit this gig.

So, to the task at hand: this month’s “stuff.”
As I think back – searching for this

month’s Thread fodder in that blurring
database of murky self-awareness – cer-
tain recollections stand out boldly in my
memory, maintained with (at least the
illusion of) crystalline clarity. Some such
moments are undoubtedly the result of a
simultaneous psychic shock – the assas-
sinations of JFK, MLK, RFK, and John
Lennon; the first moon landing; the
Challenger disaster; 9/11…. Others are
seemingly just random snippets of
remembered awareness, inexplicably
preserved for personal perusal.

For example, something just remind-
ed me of one particular evening in
December of 1967. I was 10 years old
and had come home from a friend’s
house in time to see the name of Dr.
Christiaan Barnard as it flashed on the
TV screen. It seemed to me that “Dr.
Christiaan Barnard” had a pretty dog-
goned funny way of spelling his first
name, but the venerable Mr. Cronkite
didn’t even crack a smile as he told us the
incredible news: this remarkable man
from South Africa had successfully per-
formed the first human heart transplant.

Twilight was just giving way to
evening as Walter awed us all with this
landmark news. What promise the world

held! What wonderful cause for hope and
optimism and pride in the human race!
We cured polio, managed to forestall
nuclear holocaust (so far), and now were
on the verge of removing and replacing
the human heart.

However, lovely evenings during a
South Dakota winter don’t usually last
very long, and this was no exception.

Through the darkly colored glass of
distant recollection, it seems as though
darkness fell too swiftly, as Mr. Cronkite
inevitably turned to the daily body
counts out of Vietnam: so many dead,
so many wounded, so many missing in
action. So very, very many. Reality
blends smoothly into surreality, as I
remember the shards of shattered opti-
mism quietly exploding at the sight of
graphic footage. Film at 11.

While I can nearly picture Walter’s
face in my memory, I can’t remember
the actual body count from that partic-
ular day. One thing is certain, though,
there was a body count that day; there
was a body count every day.

I sure hope I’m wrong, but it looks
to me as if the world may be in for
another extended bout of nightly body
counts on the “Nightly News.” Is there
anything we can do to stop it? Should it
be stopped? Don’t ask me. I’m just a
family man, computer programmer,
and ersatz freelance writer.

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

As I’m pathologically fond of pointing out – I’m a child of a bygone era. Oh, I’m not old enough to
remember the time before Sputnik, light bulbs, or the coagulation of the planets from protostellar dust
clouds, but I surely do remember GI Joe at 45 caliber, Ray Stevens at 45 RPM, and factory-rolled cigarettes
at 45¢ a pack sold to anxious minors desperate to rebel (just like everyone else).

Fear of the Dark

115MAY 2002

Java COM

WebGain, Inc.
www.webgain.com/toplink_create3.html

Java COM

116 MAY 2002

Sitraka
www.sitraka.com/performasure/jdj

